6,513 research outputs found

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Cooperative Fuzzy Games Approach to Setting Target Levels of ECs in Quality Function Deployment

    Get PDF
    Quality function deployment (QFD) can provide a means of translating customer requirements (CRs) into engineering characteristics (ECs) for each stage of product development and production. The main objective of QFD-based product planning is to determine the target levels of ECs for a new product or service. QFD is a breakthrough tool which can effectively reduce the gap between CRs and a new product/service. Even though there are conflicts among some ECs, the objective of developing new product is to maximize the overall customer satisfaction. Therefore, there may be room for cooperation among ECs. A cooperative game framework combined with fuzzy set theory is developed to determine the target levels of the ECs in QFD. The key to develop the model is the formulation of the bargaining function. In the proposed methodology, the players are viewed as the membership functions of ECs to formulate the bargaining function. The solution for the proposed model is Pareto-optimal. An illustrated example is cited to demonstrate the application and performance of the proposed approach

    Manufacturing Quality Function Deployment: Literature Review and Future Trends

    Get PDF
    A comprehensive review of the Quality Function Deployment (QFD) literature is made using extensive survey as a methodology. The most important results of the study are: (i) QFD modelling and applications are one-sided; prioritisation of technical attributes only maximise customer satisfaction without considering cost incurred (ii) we are still missing considerable knowledge about neural networks for predicting improvement measures in customer satisfaction (iii) further exploration of the subsequent phases (process planning and production planning) of QFD is needed (iv) more decision support systems are needed to automate QFD (v) feedbacks from customers are not accounted for in current studies

    Fuzzy Regression for Perceptual Image Quality Assessment

    Get PDF
    Subjective image quality assessment (IQA) is fundamentally important in various image processing applications such as image/video compression and image reconstruction, since it directly indicates the actual human perception of an image. However, fuzziness due to human judgment is neglected in current methodologies for predicting subjective IQA, where the fuzziness indicates assessment uncertainty. In this article, we propose a fuzzy regression method that accounts for fuzziness introduced through human judgment and the limitations of widely-used psychometric quality scales. We demonstrate how fuzzy regression models provide fuzziness information regarding subjective IQA. We benchmark the fuzzy regression method against the commonly used explicit modeling method for subjective IQA namely statistical regression by considering three real situations involving subjective image quality experiments where: (a) the number of participants is insufficient; (b) an insufficient amount of data is used for modelling; and (c) variant fuzziness is caused by human judgment. Results indicate that fuzzy regression models achieve more effective data fitting and better generalization capability when predicting subjective IQA under different types and levels of image distortion

    A methodology of integrating affective design with defining engineering specifications for product design

    Get PDF
    Affective design and the determination of engineering specifications are commonly conducted separately in early product design stage. Generally, designers and engineers are required to determine the settings of design attributes (for affective design) and engineering requirements (for engineering design), respectively, for new products. Some design attributes and some engineering requirements could be common. However, the settings of the design attributes and engineering requirements could be different because of the separation of the two processes. In previous studies, a methodology that considers the determination of the settings of the design attributes and engineering requirements simultaneously was not found. To bridge this gap, a methodology for considering affective design and the determination of engineering specifications of a new product simultaneously is proposed. The proposed methodology mainly involves generation of customer satisfaction models, formulation of a multi-objective optimisation model and its solving using a chaos-based NSGA-II. To illustrate and validate the proposed methodology, a case study of mobile phone design was conducted. A validation test was conducted and the test results showed that the customer satisfaction values obtained based on the proposed methodology were higher than those obtained based on the combined standalone quality function deployment and standalone affective design approach

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    A Flexible Fuzzy Regression Method for Addressing Nonlinear Uncertainty on Aesthetic Quality Assessments

    Get PDF
    Development of new products or services requires knowledge and understanding of aesthetic qualities that correlate to perceptual pleasure. As it is not practical to develop a survey to assess aesthetic quality for all objective features of a new product or service, it is necessary to develop a model to predict aesthetic qualities. In this paper, a fuzzy regression method is proposed to predict aesthetic quality from a given set of objective features and to account for uncertainty in human assessment. The proposed method overcomes the shortcoming of statistical regression, which can predict only quality magnitudes but cannot predict quality uncertainty. The proposed method also attempts to improve traditional fuzzy regressions, which simulate a single characteristic with which the estimated uncertainty can only increase with the increasing magnitudes of objective features. The proposed fuzzy regression method uses genetic programming to develop nonlinear structures of the models, and model coefficients are determined by optimizing the fuzzy criteria. Hence, the developed model can be used to fit the nonlinearities of sample magnitudes and uncertainties. The effectiveness and the performance of the proposed method are evaluated by the case study of perceptual images, which are involved with different sampling natures and with different amounts of samples. This case study attempts to address different characteristics of human assessments. The outcomes demonstrate that more robust models can be developed by the proposed fuzzy regression method compared with the recently developed fuzzy regression methods, when the model characteristics and fuzzy criteria are taken into account

    A stepwise based fuzzy regression procedure for developing customer preference models in new product development

    Get PDF
    Fuzzy regression methods have commonly been used to develop consumer preferences models which correlate the engineering characteristics with consumer preferences regarding a new product; the consumer preference models provide a platform whereby product developers can decide the engineering characteristics in order to satisfy consumer preferences prior to developing the products. Recent research shows that these fuzzy regression methods are commonly used to model customer preferences. However, these approaches have a common limitation in that they do not investigate the appropriate polynomial structure which includes significant regressors with only significant engineering characteristics; also, they cannot generate interaction or high-order regressors in the models. The inclusion of insignificant regressors is not an effective approach when developing the models. Exclusion of significant regressors may affect the generalization capability of the consumer preference models. In this paper, a novel fuzzy modelling method is proposed, namely fuzzy stepwise regression (F-SR), in order to develop a customer preference model which is structured with an appropriate polynomial which includes only significant regressors.Based on the appropriate polynomial structure, the fuzzy coefficients are determined using the fuzzy least square regression. The developed fuzzy regression model attempts to obtain a better generalization capability using a smaller number of regressors. The effectiveness of the F-SR is evaluated based on two design problems, namely a tea maker design and a solder paste dispenser design. Results show that better generalization capabilities can be obtained compared with the fuzzy regression methods commonly-used for new product development. Also, smaller-scale consumer preference models with fewer engineering characteristics can be obtained. Hence, a simpler and more effective product development platform can be provided
    corecore