3,945 research outputs found

    Advanced multiparametric optimization and control studies for anaesthesia

    Get PDF
    Anaesthesia is a reversible pharmacological state of the patient where hypnosis, analgesia and muscle relaxation are guaranteed and maintained throughout the surgery. Analgesics block the sensation of pain; hypnotics produce unconsciousness, while muscle relaxants prevent unwanted movement of muscle tone. Controlling the depth of anaesthesia is a very challenging task, as one has to deal with nonlinearity, inter- and intra-patient variability, multivariable characteristics, variable time delays, dynamics dependent on the hypnotic agent, model analysis variability, agent and stability issues. The modelling and automatic control of anaesthesia is believed to (i) benefit the safety of the patient undergoing surgery as side-effects may be reduced by optimizing the drug infusion rates, and (ii) support anaesthetists during critical situations by automating the drug delivery systems. In this work we have developed several advanced explicit/multi-parametric model predictive (mp-MPC) control strategies for the control of depth of anaesthesia. State estimation techniques are developed and used simultaneously with mp-MPC strategies to estimate the state of each individual patient, in an attempt to overcome the challenges of inter- and intra- patient variability, and deal with possible unmeasurable noisy outputs. Strategies to deal with the nonlinearity have been also developed including local linearization, exact linearization as well as a piece-wise linearization of the Hill curve leading to a hybrid formulation of the patient model and thereby the development of multiparametric hybrid model predictive control methodology. To deal with the inter- and intra- patient variability, as well as the noise on the process output, several robust techniques and a multiparametric moving horizon estimation technique have been design and implemented. All the studies described in the thesis are performed on clinical data for a set of 12 patients who underwent general anaesthesia.Open Acces

    Advanced model-based control studies for the induction and maintenance of intravenous anaesthesia

    Get PDF
    This paper describes strategies toward model-based automation of intravenous anaesthesia employing advanced control techniques. In particular, based on a detailed compartmental mathematical model featuring pharmacokinetic and pharmacodynamics information, two alternative model predictive control strategies are presented: a model predictive control strategy, based on online optimization, the extended predictive self-adaptive control and a multiparametric control strategy based on offline optimization, the multiparametric model predictive control. The multiparametric features to account for the effect of nonlinearity and the impact of estimation are also described. The control strategies are tested on a set of 12 virtually generated patient models for the regulation of the depth of anaesthesia by means of the bispectral index (BIS) using Propofol as the administrated anaesthetic. The simulations show fast response, suitability of dose, and robustness to induce and maintain the desired BIS setpoint

    Modelling, Optimisation and Explicit Model Predictive Control of Anaesthesia Drug Delivery Systems

    Get PDF
    The contributions of this thesis are organised in two parts. Part I presents a mathematical model for drug distribution and drug effect of volatile anaesthesia. Part II presents model predictive control strategies for depth of anaesthesia control based on the derived model. Closed-loop model predictive control strategies for anaesthesia are aiming to improve patient's safety and to fine-tune drug delivery, routinely performed by the anaesthetist. The framework presented in this thesis highlights the advantages of extensive modelling and model analysis, which are contributing to a detailed understanding of the system, when aiming for the optimal control of such system. As part of the presented framework, the model uncertainty originated from patient-variability is analysed and the designed control strategy is tested against the identified uncertainty. An individualised physiologically based model of drug distribution and uptake, pharmacokinetics, and drug effect, pharmacodynamics, of volatile anaesthesia is presented, where the pharmacokinetic model is adjusted to the weight, height, gender and age of the patient. The pharmacodynamic model links the hypnotic depth measured by the Bispectral index (BIS), to the arterial concentration by an artificial effect site compartment and the Hill equation. The individualised pharmacokinetic and pharmacodynamic variables and parameters are analysed with respect to their influence on the measurable outputs, the end-tidal concentration and the BIS. The validation of the model, performed with clinical data for isoflurane and desflurane based anaesthesia, shows a good prediction of the drug uptake, while the pharmacodynamic parameters are individually estimated for each patient. The derived control design consists of a linear multi-parametric model predictive controller and a state estimator. The non-measurable tissue and blood concentrations are estimated based on the end-tidal concentration of the volatile anaesthetic. The designed controller adapts to the individual patient's dynamics based on measured data. In an alternative approach, the individual patient's sensitivity is estimated on-line by solving a least squares parameter estimation problem.Open Acces

    On adaptive control and particle filtering in the automatic administration of medicinal drugs

    Get PDF
    Automatic feedback methodologies for the administration of medicinal drugs offer undisputed potential benefits in terms of cost reduction and improved clinical outcomes. However, despite several decades of research, the ultimate safety of many--it would be fair to say most--closed-loop drug delivery approaches remains under question and manual methods based on clinicians' expertise are still dominant in clinical practice. Key challenges to the design of control systems for these applications include uncertainty in pharmacological models, as well as intra- and interpatient variability in the response to drug administration. Pharmacological systems may feature nonlinearities, time delays, time-varying parameters and non-Gaussian stochastic processes. This dissertation investigates a novel multi-controller adaptive control strategy capable of delivering safe control for closed-loop drug delivery applications without impairing clinicians' ability to make an expert assessment of a clinical situation. Our new feedback control approach, which we have named Robust Adaptive Control with Particle Filtering (RAC-PF), estimates a patient's individual response characteristic in real-time through particle filtering and uses the Bayesian inference result to select the most suitable controller for closed-loop operation from a bank of candidate controllers designed using the robust methodology of mu-synthesis. The work is presented as four distinct pieces of research. We first apply the existing approach of Robust Multiple-Model Adaptive Control (RMMAC), which features robust controllers and Kalman filter estimators, to the case-study of administration of the vasodepressor drug sodium nitroprusside and examine benefits and drawbacks. We then consider particle filtering as an alternative to Kalman filter-based methods for the real-time estimation of pharmacological dose-response, and apply this to the nonlinear pharmacokinetic-pharmacodynamic model of the anaesthetic drug propofol. We ultimately combine particle filters and robust controllers to create RAC-PF, and test our novel approach first in a proof-of-concept design and finally in the case of sodium nitroprusside. The results presented in the dissertation are based on computational studies, including extensive Monte-Carlo simulation campaigns. Our findings of improved parameter estimates from noisy observations support the use of particle filtering as a viable tool for real-time Bayesian inference in pharmacological system identification. The potential of the RAC-PF approach as an extension of RMMAC for closed-loop control of a broader class of systems is also clearly highlighted, with the proposed new approach delivering safe control of acute hypertension through sodium nitroprusside infusion when applied to a very general population response model. All approaches presented are generalisable and may be readily adapted to other drug delivery instances

    MPC for Propofol Anesthesia: the Noise Issue

    Get PDF
    The design of automatic control systems for general anesthesia is a challenging task due to the severe safety requirements and process constraints. This is even more complex when model-based control techniques are used due to the significant variability of the process model. Additionally, issues like noisy measurements and interference also influence the control system overall performance. In this context, adequate filtering and control system sampling period selection should be analyzed to test their influence on the controller. In this paper, an MPC system for the depth of hypnosis, where the BIS signal is used as a controlled variable, is analyzed. The main purpose is to test and evaluate how the process noise affects the performance of the control system. The analysis is performed in a simulation study using a dataset of virtual patients representative of a wide population. Results show that a satisfactory performance is obtained when the noise is explicitly taken into account in the controller tuning procedure for a specific sampling period

    Closed-loop control of anesthesia : survey on actual trends, challenges and perspectives

    Get PDF
    Automation empowers self-sustainable adaptive processes and personalized services in many industries. The implementation of the integrated healthcare paradigm built on Health 4.0 is expected to transform any area in medicine due to the lightning-speed advances in control, robotics, artificial intelligence, sensors etc. The two objectives of this article, as addressed to different entities, are: i) to raise awareness throughout the anesthesiologists about the usefulness of integrating automation and data exchange in their clinical practice for providing increased attention to alarming situations, ii) to provide the actualized insights of drug-delivery research in order to create an opening horizon towards precision medicine with significantly improved human outcomes. This article presents a concise overview on the recent evolution of closed-loop anesthesia delivery control systems by means of control strategies, depth of anesthesia monitors, patient modelling, safety systems, and validation in clinical trials. For decades, anesthesia control has been in the midst of transformative changes, going from simple controllers to integrative strategies of two or more components, but not achieving yet the breakthrough of an integrated system. However, the scientific advances that happen at high speed need a modern review to identify the current technological gaps, societal implications, and implementation barriers. This article provides a good basis for control research in clinical anesthesia to endorse new challenges for intelligent systems towards individualized patient care. At this connection point of clinical and engineering frameworks through (semi-) automation, the following can be granted: patient safety, economical efficiency, and clinicians' efficacy

    Physiological and pharmacological modelling in neurological intensive care and anaesthesia

    Get PDF
    Mathematical models of physiological processes can be used in critical care and anaesthesia to improve the understanding of disease processes and to guide treatment. This thesis provides a detailed description of two studies that are related through their shared aim of modelling different aspects of brain physiology. The Relationship Between Transcranial Bioimpedance and Invasive Intracranial Pressure Measurement in Traumatic Brain Injury Patients (BioTBI) Study describes an attempt to model intracranial pressure (ICP) in patients admitted with severe traumatic brain injury (TBI). It is introduced with a detailed discussion of the monitoring and modelling of ICP in patients with TBI alongside the rationale for considering transcranial bioimpedance (TCB) as a non-invasive approach to estimating ICP. The BioTBI Study confirmed a significant relationship between TCB and invasively measured ICP in ten patients admitted to the neurological intensive care unit (NICU) with severe TBI. Even when using an adjusted linear modelling technique to account for patient covariates, the magnitude of the relationship was small (r-squared = 0.32) and on the basis of the study, TCB is not seen as a realistic technique to monitor ICP in TBI. Target controlled infusion (TCI) of anaesthetic drugs exploit known pharmacokinetic pharmacodynamic (PKPD) models to achieve set concentrations in the plasma or an effect site. Following a discussion of PKPD model development for the anaesthetic drug propofol, the Validation Study of the Covariates Model (VaSCoM) describes a joint PKPD study of the Covariates Model. Pharmacokinetic validation of plasma concentrations predicted by the model in forty patients undergoing general anaesthesia confirmed a favourable overall bias (3%) and inaccuracy (25%) compared to established PKPD models. The first description of the pharmacodynamic behaviour of the Covariates Model is provided with an estimated rate constant for elimination from the effect site compartment (ke0) of 0.21 to 0.27 min-1

    Development and implementation of feed-back controlled drug administration during anesthesia and sedation

    Get PDF
    • …
    corecore