16,489 research outputs found

    Contour Dynamics Methods

    Get PDF
    In an early paper on the stability of fluid layers with uniform vorticity Rayleigh (1880) remarks: "... In such cases, the velocity curve is composed of portions of straight lines which meet each other at finite angles. This state of things may be supposed to be slightly disturbed by bending the surfaces of transition, and the determination of the subsequent motion depends upon that of the form of these surfaces. For co retains its constant value throughout each layer unchanged in the absence of friction, and by a well-known theorem the whole motion depends upon [omega]." We can now recognize this as essentially the principal of contour dynamics (CD), where [omega] is the uniform vorticity. The theorem referred to is the Biot-Savart law. Nearly a century later Zabusky et al (1979) presented numerical CD calculations of nonlinear vortex patch evolution. Subsequently, owing to its compact form conferring a deceptive simplicity, CD has become a widely used method for the investigation of two-dimensional rotational flow of an incompressible inviscid fluid. The aim of this article is to survey the development, technical details, and vortex-dynamic applications of the CD method in an effort to assess its impact on our understanding of the mechanics of rotational flow in two dimensions at ultrahigh Reynolds numbers. The study of the dynamics of two- and three-dimensional vortex mechanics by computational methods has been an active research area for more than two decades. Quite apart from many practical applications in the aerodynamics of separated flows, the theoretical and numerical study of vortices in incompressible fluids has been stimulated by the idea that turbulent fluid motion may be viewed as comprising ensembles of more or less coherent laminar vortex structures that interact via relatively simple dynamics and by the appeal of the vorticity equation, which does not contain the fluid pressure. Two-dimensional vortex interactions have been perceived as supposedly relevant to the origins of coherent structures observed experimentally in mixing layers, jets, and wakes, and for models of large-scale atmospheric and oceanic turbulence. Interest has often focused on the limit of infinite Reynolds number, where in the absence of boundaries, the inviscid Euler equations are assumed to properly describe the flow dynamics. The numerous surveys of progress in the study of vorticity and the use of numerical methods applied to vortex mechanics include articles by Saffman & Baker (1979) and Saffman (1981) on inviscid vortex interactions and Aref (1983) on two-dimensional flows. Numerical methods have been surveyed by Chorin (1980), and Leonard (1980, 1985). Caflisch (1988) describes work on the mathematical aspects of the subject. Zabusky (1981), Aref (1983), and Melander et al (1987b) discuss various aspects of CD. The review of Dritschel (1989) gives emphasis to numerical issues in CD and to recent computations with contour surgery. This article is confined to a discussion of vortices on a two-dimensional surface. We generally follow Saffman & Baker (1979) in matters of definition. In two dimensions a vortex sheet is a line of discontinuity in velocity while a vortex jump is a line of discontinuity in vorticity. We shall, however, use filament to denote a two-dimensional ribbon of vorticity surrounded by fluid with vorticity of different magnitude (which may be zero), rather than the more usual three-dimensional idea of a vortex tube. The ambiguity is unfortunate but is already in the literature. Additionally, a vortex patch is a finite, singly connected area of uniform vorticity while a vortex strip is an infinite strip of uniform vorticity with finite thickness, or equivalently, an infinite filament. Contour Dynamics will refer to the numerical solution of initial value problems for piecewise constant vorticity distributions by the Lagrangian method of calculating the evolution of the vorticity jumps. Such flows are often related to corresponding solutions of the Euler equations that are steady in some translating or rotating frame of reference. These solutions will be called vortex equilibria, and the numerical technique for computing their shapes based on CD is often referred to as contour statics. The mathematical foundation for the study of vorticity was laid primarily by the well-known investigations of Helmholtz, Kelvin, J. J. Thomson, Love, and others. In our century, efforts to produce numerical simulations of flows governed by the Euler equations have utilized a variety of Eulerian, Lagrangian, and hybrid methods. Among the former are the class of spectral methods that now comprise the prevailing tool for large-scale two- and three-dimensional calculations (see Hussaini & Zang 1987). The Lagrangian methods for two-dimensional flows have been predominantly vortex tracking techniques based on the Helmholtz vorticity laws. The first initial value calculations were those of Rosenhead (193l) and Westwater (1935) who attempted to calculate vortex sheet evolution by the motion of O(10) point vortices. Subsequent efforts by Moore (1974) (see also Moore 1983, 1985) and others to produce more refined computations for vortex sheets have failed for reasons related to the tendency for initially smooth vortex sheet data to produce singularities (Moore 1979). Discrete vortex methods used to study the nonlinear dynamics of vortex patches and layers have included the evolution of assemblies of point vortices by direct summation (e.g. Acton 1976) and the cloud in cell method (Roberts & Christiansen 1972, Christiansen & Zabusky 1973, Aref & Siggia 1980, 1981). For reviews see Leonard (1980) and Aref (1983). These techniques have often been criticized for their lack of accuracy and numerical convergence and because they may be subject to grid scale dispersion. However, many qualitative vortex phenomena observed in nature and in experiments, such as amalgamation events and others still under active investigation (e.g. filamentation) were first simulated numerically with discrete vortices. The contour dynamics approach is attractive because it appears to allow direct access, at least for small times, to the inviscid dynamics for vorticity distributions smoother than those of either point vortices or vortex sheets, while at the same time enabling the mapping of the two-dimensional Euler equations to a one-dimensional Lagrangian form. In Section 2 we discuss the formulation and numerical implementation of contour dynamics for the Euler equations in two dimensions. Section 3 is concerned with applications to isolated and multiple vortex systems and to vortex layers. An attempt is made to relate this work to calculations of the relevant vortex equilibria and to results obtained with other methods. Axisymmetric contour dynamics and the treatment of the multi-layer model of quasigeostrophic flows are described in Section 4 while Section 5 is devoted to a discussion of the tendency shown by vorticity jumps to undergo the strange and subtle phenomenon of filamentation

    Jump Rope Vortex in Liquid Metal Convection

    Full text link
    Understanding large scale circulations (LSCs) in turbulent convective systems is important for the study of stars, planets and in many industrial applications. The canonical model of the LSC is quasi-planar with additional horizontal sloshing and torsional modes [Brown E, Ahlers G (2009) J. Fluid Mech. 638:383--400; Funfschilling D, Ahlers G (2004) Phys. Rev. Lett. 92(19):194502; Xi HD et al. (2009) Phys. Rev. Lett. 102(4):044503; Zhou Q et al. (2009) J. Fluid Mech. 630:367--390]. Using liquid gallium as the working fluid, we show via coupled laboratory-numerical experiments that the LSC in a tank with aspect ratios greater than unity takes instead the form of a "jump rope vortex", a strongly three-dimensional mode that periodically orbits around the tank following a motion much like a jump rope on a playground. Further experiments show that this jump rope flow also exists in more viscous fluids such as water, albeit with a far smaller signal. Thus, this new jump rope mode is an essential component of the turbulent convection that underlies our observations of natural systems

    Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion: Intermediate rotation rates

    Get PDF
    The temporal development of two-dimensional viscous incompressible flow generated by a circular cylinder started impulsively into steady rotatory and rectilinear motion is studied by integration of a velocity/vorticity formulation of the governing equations, using an explicit finite-difference/pseudo-spectral technique and an implementation of the Biot-Savart law. Results are presented for a Reynolds number of 200 (based on the cylinder diameter 2a and the magnitude U of the rectilinear velocity) for several values of the angular/rectilinear speed ratio alpha = (omega x a)/U (where omega is the angular speed) up to 3.25. Several aspects of the kinematics and dynamics of the flow not considered earlier are discussed. For higher values of alpha, the results indicate that for Re = 200, vortex shedding does indeed occur for alpha = 3.25. The shedding process is; however, very different from that which gives rise to the usual Karman vortex street for alpha = 0. In particular, consecutive vortices shed by the body can be shed from the same side and be of the same sense, in contrast to the nonrotating case, in which mirror-image vortices of opposite sense are shed alternately on opposite sides of the body. The implications of the results are discussed in relation to the possibility of suppressing vortex shedding by open or closed-loop control of the rotation rate

    Aerodynamic properties of turbulent combustion fields

    Get PDF
    Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length

    The finite element method in low speed aerodynamics

    Get PDF
    The finite element procedure is shown to be of significant impact in design of the 'computational wind tunnel' for low speed aerodynamics. The uniformity of the mathematical differential equation description, for viscous and/or inviscid, multi-dimensional subsonic flows about practical aerodynamic system configurations, is utilized to establish the general form of the finite element algorithm. Numerical results for inviscid flow analysis, as well as viscous boundary layer, parabolic, and full Navier Stokes flow descriptions verify the capabilities and overall versatility of the fundamental algorithm for aerodynamics. The proven mathematical basis, coupled with the distinct user-orientation features of the computer program embodiment, indicate near-term evolution of a highly useful analytical design tool to support computational configuration studies in low speed aerodynamics

    Aeronautical engineering: A special bibliography with indexes, supplement 80

    Get PDF
    This bibliography lists 277 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1977
    corecore