350 research outputs found

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Research on Impulse Radio Ultra - wideband Positioning Method Based on Combined BP Neural Network and SVM

    Get PDF
    Intelligent tour guide is a comprehensive service based on tourist\u27s location, which is closely related to Geographic Information System (GIS), mobile positioning technology and Location-Based Service (LBS). But the intelligent tour guide field urgently needs the integrated positioning and navigation technology inside and outside the room. IR-UWB technology is suitable for positioning, tracking, navigation and communication in complex indoor environment, and is considered as the most potential indoor positioning technology to realize seamless connection between indoor and outdoor with outdoor positioning technologies such as GPS. However, one of the main problems facing IR-UWB positioning is Non-Line-Of-Sight (NLOS) error. Based on the advantages of BP neural network and support vector machine, this paper proposes a multi-model fusion algorithm to mitigate the NLOS propagation error of the time difference of arrival (TDOA) and the angle of arrival (AOA) of IR-UWB signal, and then uses TDOA/AOA hybrid positioning that mitigates the NLOS error. Simulation results show that the combined algorithm has stronger NLOS resistance and higher positioning accuracy than the single machine learning algorithm in mitigation NLOS errors

    Probabilistic Time of Arrival Localization

    Get PDF
    In this letter, we take a new approach for time of arrival geo-localization. We show that the main sources of error in metropolitan areas are due to environmental imperfections that bias our solutions, and that we can rely on a probabilistic model to learn and compensate for them. The resulting localization error is validated using measurements from a live LTE cellular network to be less than 10 meters, representing an order-of-magnitude improvement

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors
    • 

    corecore