4,447 research outputs found

    Design of Sequences with Good Folding Properties in Coarse-Grained Protein Models

    Get PDF
    Background: Designing amino acid sequences that are stable in a given target structure amounts to maximizing a conditional probability. A straightforward approach to accomplish this is a nested Monte Carlo where the conformation space is explored over and over again for different fixed sequences, which requires excessive computational demand. Several approximate attempts to remedy this situation, based on energy minimization for fixed structure or high-TT expansions, have been proposed. These methods are fast but often not accurate since folding occurs at low TT. Results: We develop a multisequence Monte Carlo procedure, where both sequence and conformation space are simultaneously probed with efficient prescriptions for pruning sequence space. The method is explored on hydrophobic/polar models. We first discuss short lattice chains, in order to compare with exact data and with other methods. The method is then successfully applied to lattice chains with up to 50 monomers, and to off-lattice 20-mers. Conclusions: The multisequence Monte Carlo method offers a new approach to sequence design in coarse-grained models. It is much more efficient than previous Monte Carlo methods, and is, as it stands, applicable to a fairly wide range of two-letter models.Comment: 23 pages, 7 figure

    Parallelization of Markov chain generation and its application to the multicanonical method

    Full text link
    We develop a simple algorithm to parallelize generation processes of Markov chains. In this algorithm, multiple Markov chains are generated in parallel and jointed together to make a longer Markov chain. The joints between the constituent Markov chains are processed using the detailed balance. We apply the parallelization algorithm to multicanonical calculations of the two-dimensional Ising model and demonstrate accurate estimation of multicanonical weights.Comment: 15 pages, 5 figures, uses elsart.cl

    A tractable genotype-phenotype map for the self-assembly of protein quaternary structure

    Full text link
    The mapping between biological genotypes and phenotypes is central to the study of biological evolution. Here we introduce a rich, intuitive, and biologically realistic genotype-phenotype (GP) map, that serves as a model of self-assembling biological structures, such as protein complexes, and remains computationally and analytically tractable. Our GP map arises naturally from the self-assembly of polyomino structures on a 2D lattice and exhibits a number of properties: redundancy\textit{redundancy} (genotypes vastly outnumber phenotypes), phenotype bias\textit{phenotype bias} (genotypic redundancy varies greatly between phenotypes), genotype component disconnectivity\textit{genotype component disconnectivity} (phenotypes consist of disconnected mutational networks) and shape space covering\textit{shape space covering} (most phenotypes can be reached in a small number of mutations). We also show that the mutational robustness of phenotypes scales very roughly logarithmically with phenotype redundancy and is positively correlated with phenotypic evolvability. Although our GP map describes the assembly of disconnected objects, it shares many properties with other popular GP maps for connected units, such as models for RNA secondary structure or the HP lattice model for protein tertiary structure. The remarkable fact that these important properties similarly emerge from such different models suggests the possibility that universal features underlie a much wider class of biologically realistic GP maps.Comment: 12 pages, 6 figure

    Cooperativity and Stability in a Langevin Model of Protein Folding

    Full text link
    We present two simplified models of protein dynamics based on Langevin's equation of motion in a viscous medium. We explore the effect of the potential energy function's symmetry on the kinetics and thermodynamics of simulated folding. We find that an isotropic potential energy function produces, at best, a modest degree of cooperativity. In contrast, a suitable anisotropic potential energy function delivers strong cooperativity.Comment: 45 pages, 16 figures, 2 tables. LaTeX. Submitted to the Journal of Chemical Physic

    Fast Tree Search for Enumeration of a Lattice Model of Protein Folding

    Full text link
    Using a fast tree-searching algorithm and a Pentium cluster, we enumerated all the sequences and compact conformations (structures) for a protein folding model on a cubic lattice of size 4×3×34\times3\times3. We used two types of amino acids -- hydrophobic (H) and polar (P) -- to make up the sequences, so there were 2366.87×10102^{36} \approx 6.87 \times 10^{10} different sequences. The total number of distinct structures was 84,731,192. We made use of a simple solvation model in which the energy of a sequence folded into a structure is minus the number of hydrophobic amino acids in the ``core'' of the structure. For every sequence, we found its ground state or ground states, i.e., the structure or structures for which its energy is lowest. About 0.3% of the sequences have a unique ground state. The number of structures that are unique ground states of at least one sequence is 2,662,050, about 3% of the total number of structures. However, these ``designable'' structures differ drastically in their designability, defined as the number of sequences whose unique ground state is that structure. To understand this variation in designability, we studied the distribution of structures in a high dimensional space in which each structure is represented by a string of 1's and 0's, denoting core and surface sites, respectively.Comment: 18 pages, 10 figure

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciónSéneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.Ingeniería, Industria y Construcció
    corecore