1,661 research outputs found

    Combinatorial Markov chains on linear extensions

    Full text link
    We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extensions of a finite poset of size n. This gives rise to a strongly connected graph on L. By assigning weights to the edges of the graph in two different ways, we study two Markov chains, both of which are irreducible. The stationary state of one gives rise to the uniform distribution, whereas the weights of the stationary state of the other has a nice product formula. This generalizes results by Hendricks on the Tsetlin library, which corresponds to the case when the poset is the anti-chain and hence L=S_n is the full symmetric group. We also provide explicit eigenvalues of the transition matrix in general when the poset is a rooted forest. This is shown by proving that the associated monoid is R-trivial and then using Steinberg's extension of Brown's theory for Markov chains on left regular bands to R-trivial monoids.Comment: 35 pages, more examples of promotion, rephrased the main theorems in terms of discrete time Markov chain

    Flag-symmetry of the poset of shuffles and a local action of the symmetric group

    Get PDF
    We show that the poset of shuffles introduced by Greene in 1988 is flag-symmetric, and we describe a "local" permutation action of the symmetric group on the maximal chains which is closely related to the flag symmetric function of the poset. A key tool is provided by a new labeling of the maximal chains of a poset of shuffles, which is also used to give bijective proofs of enumerative properties originally obtained by Greene. In addition we define a monoid of multiplicative functions on all posets of shuffles and describe this monoid in terms of a new operation on power series in two variables.Comment: 34 pages, 6 figure

    The biHecke monoid of a finite Coxeter group and its representations

    Full text link
    For any finite Coxeter group W, we introduce two new objects: its cutting poset and its biHecke monoid. The cutting poset, constructed using a generalization of the notion of blocks in permutation matrices, almost forms a lattice on W. The construction of the biHecke monoid relies on the usual combinatorial model for the 0-Hecke algebra H_0(W), that is, for the symmetric group, the algebra (or monoid) generated by the elementary bubble sort operators. The authors previously introduced the Hecke group algebra, constructed as the algebra generated simultaneously by the bubble sort and antisort operators, and described its representation theory. In this paper, we consider instead the monoid generated by these operators. We prove that it admits |W| simple and projective modules. In order to construct the simple modules, we introduce for each w in W a combinatorial module T_w whose support is the interval [1,w]_R in right weak order. This module yields an algebra, whose representation theory generalizes that of the Hecke group algebra, with the combinatorics of descents replaced by that of blocks and of the cutting poset.Comment: v2: Added complete description of the rank 2 case (Section 7.3) and improved proof of Proposition 7.5. v3: Final version (typo fixes, picture improvements) 66 pages, 9 figures Algebra and Number Theory, 2013. arXiv admin note: text overlap with arXiv:1108.4379 by other author

    Application of graph combinatorics to rational identities of type A

    Get PDF
    To a word ww, we associate the rational function Ψw=(xwixwi+1)1\Psi_w = \prod (x_{w_i} - x_{w_{i+1}})^{-1}. The main object, introduced by C. Greene to generalize identities linked to Murnaghan-Nakayama rule, is a sum of its images by certain permutations of the variables. The sets of permutations that we consider are the linear extensions of oriented graphs. We explain how to compute this rational function, using the combinatorics of the graph GG. We also establish a link between an algebraic property of the rational function (the factorization of the numerator) and a combinatorial property of the graph (the existence of a disconnecting chain).Comment: This is the complete version of the submitted fpsac paper (2009

    Gr\"obner methods for representations of combinatorial categories

    Full text link
    Given a category C of a combinatorial nature, we study the following fundamental question: how does the combinatorial behavior of C affect the algebraic behavior of representations of C? We prove two general results. The first gives a combinatorial criterion for representations of C to admit a theory of Gr\"obner bases. From this, we obtain a criterion for noetherianity of representations. The second gives a combinatorial criterion for a general "rationality" result for Hilbert series of representations of C. This criterion connects to the theory of formal languages, and makes essential use of results on the generating functions of languages, such as the transfer-matrix method and the Chomsky-Sch\"utzenberger theorem. Our work is motivated by recent work in the literature on representations of various specific categories. Our general criteria recover many of the results on these categories that had been proved by ad hoc means, and often yield cleaner proofs and stronger statements. For example: we give a new, more robust, proof that FI-modules (originally introduced by Church-Ellenberg-Farb), and a family of natural generalizations, are noetherian; we give an easy proof of a generalization of the Lannes-Schwartz artinian conjecture from the study of generic representation theory of finite fields; we significantly improve the theory of Δ\Delta-modules, introduced by Snowden in connection to syzygies of Segre embeddings; and we establish fundamental properties of twisted commutative algebras in positive characteristic.Comment: 41 pages; v2: Moved old Sections 3.4, 10, 11, 13.2 and connected text to arxiv:1410.6054v1, Section 13.1 removed and will appear elsewhere; v3: substantial revision and reorganization of section
    corecore