12,430 research outputs found

    Combinatorial Continuous Maximal Flows

    Get PDF
    Maximum flow (and minimum cut) algorithms have had a strong impact on computer vision. In particular, graph cuts algorithms provide a mechanism for the discrete optimization of an energy functional which has been used in a variety of applications such as image segmentation, stereo, image stitching and texture synthesis. Algorithms based on the classical formulation of max-flow defined on a graph are known to exhibit metrication artefacts in the solution. Therefore, a recent trend has been to instead employ a spatially continuous maximum flow (or the dual min-cut problem) in these same applications to produce solutions with no metrication errors. However, known fast continuous max-flow algorithms have no stopping criteria or have not been proved to converge. In this work, we revisit the continuous max-flow problem and show that the analogous discrete formulation is different from the classical max-flow problem. We then apply an appropriate combinatorial optimization technique to this combinatorial continuous max-flow CCMF problem to find a null-divergence solution that exhibits no metrication artefacts and may be solved exactly by a fast, efficient algorithm with provable convergence. Finally, by exhibiting the dual problem of our CCMF formulation, we clarify the fact, already proved by Nozawa in the continuous setting, that the max-flow and the total variation problems are not always equivalent.Comment: 26 page

    Electrical networks and Stephenson's conjecture

    Full text link
    In this paper, we consider a planar annulus, i.e., a bounded, two-connected, Jordan domain, endowed with a sequence of triangulations exhausting it. We then construct a corresponding sequence of maps which converge uniformly on compact subsets of the domain, to a conformal homeomorphism onto the interior of a Euclidean annulus bounded by two concentric circles. As an application, we will affirm a conjecture raised by Ken Stephenson in the 90's which predicts that the Riemann mapping can be approximated by a sequence of electrical networks.Comment: Comments are welcome

    Large-scale optimization with the primal-dual column generation method

    Get PDF
    The primal-dual column generation method (PDCGM) is a general-purpose column generation technique that relies on the primal-dual interior point method to solve the restricted master problems. The use of this interior point method variant allows to obtain suboptimal and well-centered dual solutions which naturally stabilizes the column generation. As recently presented in the literature, reductions in the number of calls to the oracle and in the CPU times are typically observed when compared to the standard column generation, which relies on extreme optimal dual solutions. However, these results are based on relatively small problems obtained from linear relaxations of combinatorial applications. In this paper, we investigate the behaviour of the PDCGM in a broader context, namely when solving large-scale convex optimization problems. We have selected applications that arise in important real-life contexts such as data analysis (multiple kernel learning problem), decision-making under uncertainty (two-stage stochastic programming problems) and telecommunication and transportation networks (multicommodity network flow problem). In the numerical experiments, we use publicly available benchmark instances to compare the performance of the PDCGM against recent results for different methods presented in the literature, which were the best available results to date. The analysis of these results suggests that the PDCGM offers an attractive alternative over specialized methods since it remains competitive in terms of number of iterations and CPU times even for large-scale optimization problems.Comment: 28 pages, 1 figure, minor revision, scaled CPU time

    Shortest path and maximum flow problems in planar flow networks with additive gains and losses

    Full text link
    In contrast to traditional flow networks, in additive flow networks, to every edge e is assigned a gain factor g(e) which represents the loss or gain of the flow while using edge e. Hence, if a flow f(e) enters the edge e and f(e) is less than the designated capacity of e, then f(e) + g(e) = 0 units of flow reach the end point of e, provided e is used, i.e., provided f(e) != 0. In this report we study the maximum flow problem in additive flow networks, which we prove to be NP-hard even when the underlying graphs of additive flow networks are planar. We also investigate the shortest path problem, when to every edge e is assigned a cost value for every unit flow entering edge e, which we show to be NP-hard in the strong sense even when the additive flow networks are planar

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423
    corecore