4,209 research outputs found

    Spectral analysis and a closest tree method for genetic sequences

    Get PDF
    We describe a new method for estimating the evolutionary tree linking a collection of species from their aligned four-state genetic sequences. This method, which can be adapted to provide a branch-and-bound algorithm, is statistically consistent provided the sequences have evolved according to a standard stochastic model of nucleotide mutation. Our approach exploits a recent group-theoretic description of this model

    Combinatorics of least squares trees

    Get PDF
    A recurring theme in the least squares approach to phylogenetics has been the discovery of elegant combinatorial formulas for the least squares estimates of edge lengths. These formulas have proved useful for the development of efficient algorithms, and have also been important for understanding connections among popular phylogeny algorithms. For example, the selection criterion of the neighbor-joining algorithm is now understood in terms of the combinatorial formulas of Pauplin for estimating tree length. We highlight a phylogenetically desirable property that weighted least squares methods should satisfy, and provide a complete characterization of methods that satisfy the property. The necessary and sufficient condition is a multiplicative four point condition that the the variance matrix needs to satisfy. The proof is based on the observation that the Lagrange multipliers in the proof of the Gauss--Markov theorem are tree-additive. Our results generalize and complete previous work on ordinary least squares, balanced minimum evolution and the taxon weighted variance model. They also provide a time optimal algorithm for computation

    On the optimality of the neighbor-joining algorithm

    Get PDF
    The popular neighbor-joining (NJ) algorithm used in phylogenetics is a greedy algorithm for finding the balanced minimum evolution (BME) tree associated to a dissimilarity map. From this point of view, NJ is ``optimal'' when the algorithm outputs the tree which minimizes the balanced minimum evolution criterion. We use the fact that the NJ tree topology and the BME tree topology are determined by polyhedral subdivisions of the spaces of dissimilarity maps R+(n2){\R}_{+}^{n \choose 2} to study the optimality of the neighbor-joining algorithm. In particular, we investigate and compare the polyhedral subdivisions for n≤8n \leq 8. A key requirement is the measurement of volumes of spherical polytopes in high dimension, which we obtain using a combination of Monte Carlo methods and polyhedral algorithms. We show that highly unrelated trees can be co-optimal in BME reconstruction, and that NJ regions are not convex. We obtain the l2l_2 radius for neighbor-joining for n=5n=5 and we conjecture that the ability of the neighbor-joining algorithm to recover the BME tree depends on the diameter of the BME tree

    A parallel genetic algorithm for the Steiner Problem in Networks

    Get PDF
    This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances

    Polyhedral geometry of Phylogenetic Rogue Taxa

    Get PDF
    It is well known among phylogeneticists that adding an extra taxon (e.g. species) to a data set can alter the structure of the optimal phylogenetic tree in surprising ways. However, little is known about this "rogue taxon" effect. In this paper we characterize the behavior of balanced minimum evolution (BME) phylogenetics on data sets of this type using tools from polyhedral geometry. First we show that for any distance matrix there exist distances to a "rogue taxon" such that the BME-optimal tree for the data set with the new taxon does not contain any nontrivial splits (bipartitions) of the optimal tree for the original data. Second, we prove a theorem which restricts the topology of BME-optimal trees for data sets of this type, thus showing that a rogue taxon cannot have an arbitrary effect on the optimal tree. Third, we construct polyhedral cones computationally which give complete answers for BME rogue taxon behavior when our original data fits a tree on four, five, and six taxa. We use these cones to derive sufficient conditions for rogue taxon behavior for four taxa, and to understand the frequency of the rogue taxon effect via simulation.Comment: In this version, we add quartet distances and fix Table 4
    • …
    corecore