1,056 research outputs found

    Games and Mechanism Design in Machine Scheduling – An Introduction

    Get PDF
    In this paper, we survey different models, techniques, and some recent results to tackle machine scheduling problems within a distributed setting. In traditional optimization, a central authority is asked to solve a (computationally hard) optimization problem. In contrast, in distributed settings there are several agents, possibly equipped with private information that is not publicly known, and these agents need to interact in order to derive a solution to the problem. Usually the agents have their individual preferences, which induces them to behave strategically in order to manipulate the resulting solution. Nevertheless, one is often interested in the global performance of such systems. The analysis of such distributed settings requires techniques from classical Optimization, Game Theory, and Economic Theory. The paper therefore briefly introduces the most important of the underlying concepts, and gives a selection of typical research questions and recent results, focussing on applications to machine scheduling problems. This includes the study of the so-called price of anarchy for settings where the agents do not possess private information, as well as the design and analysis of (truthful) mechanisms in settings where the agents do possess private information.computer science applications;

    Optimality of Treating Interference as Noise: A Combinatorial Perspective

    Get PDF
    For single-antenna Gaussian interference channels, we re-formulate the problem of determining the Generalized Degrees of Freedom (GDoF) region achievable by treating interference as Gaussian noise (TIN) derived in [3] from a combinatorial perspective. We show that the TIN power control problem can be cast into an assignment problem, such that the globally optimal power allocation variables can be obtained by well-known polynomial time algorithms. Furthermore, the expression of the TIN-Achievable GDoF region (TINA region) can be substantially simplified with the aid of maximum weighted matchings. We also provide conditions under which the TINA region is a convex polytope that relax those in [3]. For these new conditions, together with a channel connectivity (i.e., interference topology) condition, we show TIN optimality for a new class of interference networks that is not included, nor includes, the class found in [3]. Building on the above insights, we consider the problem of joint link scheduling and power control in wireless networks, which has been widely studied as a basic physical layer mechanism for device-to-device (D2D) communications. Inspired by the relaxed TIN channel strength condition as well as the assignment-based power allocation, we propose a low-complexity GDoF-based distributed link scheduling and power control mechanism (ITLinQ+) that improves upon the ITLinQ scheme proposed in [4] and further improves over the heuristic approach known as FlashLinQ. It is demonstrated by simulation that ITLinQ+ provides significant average network throughput gains over both ITLinQ and FlashLinQ, and yet still maintains the same level of implementation complexity. More notably, the energy efficiency of the newly proposed ITLinQ+ is substantially larger than that of ITLinQ and FlashLinQ, which is desirable for D2D networks formed by battery-powered devices.Comment: A short version has been presented at IEEE International Symposium on Information Theory (ISIT 2015), Hong Kon

    Designing Coalition-Proof Reverse Auctions over Continuous Goods

    Full text link
    This paper investigates reverse auctions that involve continuous values of different types of goods, general nonconvex constraints, and second stage costs. We seek to design the payment rules and conditions under which coalitions of participants cannot influence the auction outcome in order to obtain higher collective utility. Under the incentive-compatible Vickrey-Clarke-Groves mechanism, we show that coalition-proof outcomes are achieved if the submitted bids are convex and the constraint sets are of a polymatroid-type. These conditions, however, do not capture the complexity of the general class of reverse auctions under consideration. By relaxing the property of incentive-compatibility, we investigate further payment rules that are coalition-proof without any extra conditions on the submitted bids and the constraint sets. Since calculating the payments directly for these mechanisms is computationally difficult for auctions involving many participants, we present two computationally efficient methods. Our results are verified with several case studies based on electricity market data

    Fast Iterative Combinatorial Auctions via Bayesian Learning

    Full text link
    Iterative combinatorial auctions (CAs) are often used in multi-billion dollar domains like spectrum auctions, and speed of convergence is one of the crucial factors behind the choice of a specific design for practical applications. To achieve fast convergence, current CAs require careful tuning of the price update rule to balance convergence speed and allocative efficiency. Brero and Lahaie (2018) recently introduced a Bayesian iterative auction design for settings with single-minded bidders. The Bayesian approach allowed them to incorporate prior knowledge into the price update algorithm, reducing the number of rounds to convergence with minimal parameter tuning. In this paper, we generalize their work to settings with no restrictions on bidder valuations. We introduce a new Bayesian CA design for this general setting which uses Monte Carlo Expectation Maximization to update prices at each round of the auction. We evaluate our approach via simulations on CATS instances. Our results show that our Bayesian CA outperforms even a highly optimized benchmark in terms of clearing percentage and convergence speed.Comment: 9 pages, 2 figures, AAAI-1

    Budget Feasible Mechanisms

    Full text link
    We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, and yet it has not been studied, to our knowledge, in the past. We focus on the case of procurement auctions in which sellers have private costs, and the auctioneer aims to maximize a utility function on subsets of items, under the constraint that the sum of the payments provided by the mechanism does not exceed a given budget. Standard mechanism design ideas such as the VCG mechanism and its variants are not applicable here. We show that, for general functions, the budget constraint can render mechanisms arbitrarily bad in terms of the utility of the buyer. However, our main result shows that for the important class of submodular functions, a bounded approximation ratio is achievable. Better approximation results are obtained for subclasses of the submodular functions. We explore the space of budget feasible mechanisms in other domains and give a characterization under more restricted conditions

    Look-ahead strategies for dynamic pickup and delivery problems

    Get PDF
    In this paper we consider a dynamic full truckload pickup and delivery problem with time-windows. Jobs arrive over time and are offered in a second-price auction. Individual vehicles bid on these jobs and maintain a schedule of the jobs they have won. We propose a pricing and scheduling strategy based on dynamic programming where not only the direct costs of a job insertion are taken into account, but also the impact on future opportunities. Simulation is used to evaluate the benefits of pricing opportunities compared to simple pricing strategies in various market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization, and delivery reliability

    Efficiency Resource Allocation for Device-to-Device Underlay Communication Systems: A Reverse Iterative Combinatorial Auction Based Approach

    Full text link
    Peer-to-peer communication has been recently considered as a popular issue for local area services. An innovative resource allocation scheme is proposed to improve the performance of mobile peer-to-peer, i.e., device-to-device (D2D), communications as an underlay in the downlink (DL) cellular networks. To optimize the system sum rate over the resource sharing of both D2D and cellular modes, we introduce a reverse iterative combinatorial auction as the allocation mechanism. In the auction, all the spectrum resources are considered as a set of resource units, which as bidders compete to obtain business while the packages of the D2D pairs are auctioned off as goods in each auction round. We first formulate the valuation of each resource unit, as a basis of the proposed auction. And then a detailed non-monotonic descending price auction algorithm is explained depending on the utility function that accounts for the channel gain from D2D and the costs for the system. Further, we prove that the proposed auction-based scheme is cheat-proof, and converges in a finite number of iteration rounds. We explain non-monotonicity in the price update process and show lower complexity compared to a traditional combinatorial allocation. The simulation results demonstrate that the algorithm efficiently leads to a good performance on the system sum rate.Comment: 26 pages, 6 fgures; IEEE Journals on Selected Areas in Communications, 201

    Environmental analysis for application layer networks

    Get PDF
    Die zunehmende Vernetzung von Rechnern über das Internet lies die Vision von Application Layer Netzwerken aufkommen. Sie umfassen Overlay Netzwerke wie beispielsweise Peer-to-Peer Netzwerke und Grid Infrastrukturen unter Verwendung des TCP/IP Protokolls. Ihre gemeinsame Eigenschaft ist die redundante, verteilte Bereitstellung und der Zugang zu Daten-, Rechen- und Anwendungsdiensten, während sie die Heterogenität der Infrastruktur vor dem Nutzer verbergen. In dieser Arbeit werden die Anforderungen, die diese Netzwerke an ökonomische Allokationsmechanismen stellen, untersucht. Die Analyse erfolgt anhand eines Marktanalyseprozesses für einen zentralen Auktionsmechanismus und einen katallaktischen Markt. --Grid Computing
    • …
    corecore