2,128 research outputs found

    Constructive Preference Elicitation over Hybrid Combinatorial Spaces

    Full text link
    Preference elicitation is the task of suggesting a highly preferred configuration to a decision maker. The preferences are typically learned by querying the user for choice feedback over pairs or sets of objects. In its constructive variant, new objects are synthesized "from scratch" by maximizing an estimate of the user utility over a combinatorial (possibly infinite) space of candidates. In the constructive setting, most existing elicitation techniques fail because they rely on exhaustive enumeration of the candidates. A previous solution explicitly designed for constructive tasks comes with no formal performance guarantees, and can be very expensive in (or unapplicable to) problems with non-Boolean attributes. We propose the Choice Perceptron, a Perceptron-like algorithm for learning user preferences from set-wise choice feedback over constructive domains and hybrid Boolean-numeric feature spaces. We provide a theoretical analysis on the attained regret that holds for a large class of query selection strategies, and devise a heuristic strategy that aims at optimizing the regret in practice. Finally, we demonstrate its effectiveness by empirical evaluation against existing competitors on constructive scenarios of increasing complexity.Comment: AAAI 2018, computing methodologies, machine learning, learning paradigms, supervised learning, structured output

    Learning by message-passing in networks of discrete synapses

    Get PDF
    We show that a message-passing process allows to store in binary "material" synapses a number of random patterns which almost saturates the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g. n≃105−106n\simeq10^{5}-10^{6}). The algorithm can be turned into an on-line --fault tolerant-- learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.Comment: 4 pages, 3 figures; references updated and minor corrections; accepted in PR

    Replica Symmetry Breaking and the Kuhn-Tucker Cavity Method in simple and multilayer Perceptrons

    Full text link
    Within a Kuhn-Tucker cavity method introduced in a former paper, we study optimal stability learning for situations, where in the replica formalism the replica symmetry may be broken, namely (i) the case of a simple perceptron above the critical loading, and (ii) the case of two-layer AND-perceptrons, if one learns with maximal stability. We find that the deviation of our cavity solution from the replica symmetric one in these cases is a clear indication of the necessity of replica symmetry breaking. In any case the cavity solution tends to underestimate the storage capabilities of the networks.Comment: 32 pages, LaTex Source with 9 .eps-files enclosed, accepted by J. Phys I (France

    Generalization from correlated sets of patterns in the perceptron

    Full text link
    Generalization is a central aspect of learning theory. Here, we propose a framework that explores an auxiliary task-dependent notion of generalization, and attempts to quantitatively answer the following question: given two sets of patterns with a given degree of dissimilarity, how easily will a network be able to "unify" their interpretation? This is quantified by the volume of the configurations of synaptic weights that classify the two sets in a similar manner. To show the applicability of our idea in a concrete setting, we compute this quantity for the perceptron, a simple binary classifier, using the classical statistical physics approach in the replica-symmetric ansatz. In this case, we show how an analytical expression measures the "distance-based capacity", the maximum load of patterns sustainable by the network, at fixed dissimilarity between patterns and fixed allowed number of errors. This curve indicates that generalization is possible at any distance, but with decreasing capacity. We propose that a distance-based definition of generalization may be useful in numerical experiments with real-world neural networks, and to explore computationally sub-dominant sets of synaptic solutions

    On The Robustness of a Neural Network

    Get PDF
    With the development of neural networks based machine learning and their usage in mission critical applications, voices are rising against the \textit{black box} aspect of neural networks as it becomes crucial to understand their limits and capabilities. With the rise of neuromorphic hardware, it is even more critical to understand how a neural network, as a distributed system, tolerates the failures of its computing nodes, neurons, and its communication channels, synapses. Experimentally assessing the robustness of neural networks involves the quixotic venture of testing all the possible failures, on all the possible inputs, which ultimately hits a combinatorial explosion for the first, and the impossibility to gather all the possible inputs for the second. In this paper, we prove an upper bound on the expected error of the output when a subset of neurons crashes. This bound involves dependencies on the network parameters that can be seen as being too pessimistic in the average case. It involves a polynomial dependency on the Lipschitz coefficient of the neurons activation function, and an exponential dependency on the depth of the layer where a failure occurs. We back up our theoretical results with experiments illustrating the extent to which our prediction matches the dependencies between the network parameters and robustness. Our results show that the robustness of neural networks to the average crash can be estimated without the need to neither test the network on all failure configurations, nor access the training set used to train the network, both of which are practically impossible requirements.Comment: 36th IEEE International Symposium on Reliable Distributed Systems 26 - 29 September 2017. Hong Kong, Chin
    • …
    corecore