670 research outputs found

    Collision-free path planning for robots using B-splines and simulated annealing

    Get PDF
    This thesis describes a technique to obtain an optimal collision-free path for an automated guided vehicle (AGV) and/or robot in two and three dimensions by synthesizing a B-spline curve under geometric and intrinsic constraints. The problem is formulated as a combinatorial optimization problem and solved by using simulated annealing. A two-link planar manipulator is included to show that the B-spline curve can also be synthesized by adding kinematic characteristics of the robot. A cost function, which includes obstacle proximity, excessive arc length, uneven parametric distribution and, possibly, link proximity costs, is developed for the simulated annealing algorithm. Three possible cases for the orientation of the moving object are explored: (a) fixed orientation, (b) orientation as another independent variable, and (c) orientation given by the slope of the curve. To demonstrate the robustness of the technique, several examples are presented. Objects are modeled as ellipsoid type shapes. The procedure to obtain the describing parameters of the ellipsoid is also presented

    A Branch and Prune Algorithm for the Computation of Generalized Aspects of Parallel Robots

    Get PDF
    International audienceParallel robots enjoy enhanced mechanical characteristics that have to be contrasted with a more complicated design. In particular, they often have parallel singularities at some poses, and the robots may become uncontrollable, and could even be damaged, in such configurations. The computation of the connected components in the set of nonsingular reachable configurations, called generalized aspects, is therefore a key issue in their design. This paper introduces a new method, based on numerical constraint programming, to compute a certified enclosure of the generalized aspects. Though this method does not allow counting their number rigorously, it constructs inner approximations of the nonsingular workspace that allow commanding parallel robots safely. It also provides a lower-bound on the exact number of generalized aspects. It is moreover the first general method able to handle any parallel robot in theory, though its computational complexity currently restricts its usage to robots with three degrees of freedom. Finally, the contraint programming paradigm it relies on makes it possible to consider various additional constraints (e.g., collision avoidance), making it suitable for practical considerations

    A Microfabricated Planar Digital Microrobot for Precise Positioning Based on Bistable Modules

    No full text
    International audienceSize reduction is a constant objective in new technologies, for which very accurate devices are needed when manipulating sub-millimetric objects. A new kind of microfabricated microrobot based on the use of bistable modules is designed to perform open-loop controlled micropositioning tasks. The DiMiBot (Digital MicroroBot) opens a new paradigm in the design of microrobots by using mechanical stability instead of complex control strategies. We propose a new architecture of digital microrobot for which forward and inverse kinematics models are easy to use. These kinematic models are validated with FEA simulations before the fabrication of a real DiMiBot prototype. Tests and characterization of the prototype are made and compared to the desired behavior. Thanks to its submicrometric resolution and to its small dimensions ( 400 μm thickness), it is able to manipulate micro-objects in confined environments, where no other robot can be used

    Modelling, Control and Optimization of Modular Reconfigurable Robots

    Get PDF
    Modular reconfigurable robots are robotic systems offering new opportunities to rapidly create fit-to-task flexible automation lines. The recent trends of increasingly varying market needs in low-volume high-mix manufacturing demands for highly adaptable robotic systems like this. In this context, methods for quickly and automatically generating a modular robot model and controller should be developed. Moreover, modularity and reconfigurabilty open up new opportunities for on-demand robot morphology optimization for varying tasks. Therefore a method to optimize the robot design for a certain criterion should be provided in order to exploit the full potential of reconfigurable robots. In this thesis, a complete hard- and software architecture for a modular reconfigurable EtherCAT-based robot is presented. This novel approach allows to automatically reconstruct the topology of different robot structures, composed of a set of body modules, each of which represents an EtherCAT slave. This approach enables to obtain in an automatic way the kinematic and dynamic model of the robot and store it in URDF format as soon as the physical robot is assembled or reconfigured. The method also automatically reshapes a generic optimization-based controller to be instantly used after reconfiguration. Finally, a study and analysis on how to find the best suited reconfigurable robot morphology for a given task are presented, starting from a fixed set of joint and link modules. In particular, is shown how exploiting multi-arm robotic systems and modifying the relative and absolute positions of their bases, can expand the solution space for a given task. Results obtained in simulations for different tasks, are verified with real-world experiments using a in-house developed reconfigurable robot prototype

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Kinematic Modeling And Path Planning With Collision Avoidance For Multiple Cartesian Arms

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2006Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2006Kartezyen robotlar, endüstride geniş kullanım alanı bulmaktadır. Birden fazla kartezyen robotun ortak bir iş yapmasına gerek duyulan durumlar vardır. Bu tezde yapılan çalışmanın temeli, aynı çalışma uzayındaki kartezyen robotların çarpışma olmaksızın yörünge planlamasıdır. Bu çalışmanın amacı, aynı çalışma uzayındaki kartezyen robotların konumlandırılması için gerekli algoritmaları bulmak veya türetmektir. Çarpışma sakınımlı yörünge planlaması algoritmalarını kullanarak istenen işin başarılması uzaysal işlem cebriyle kinematik olarak modellenmiş robotik sisteme dayanır. Yörünge planlaması metodları kartezyen robotlara uygulanarak çarpışma olmayan yörüngenin bulunması için algoritmalar geliştirilir.Cartesian robots are already being widely used in industry and their use will substantially increase as the developing technology brings the prices down of high payload and high precision linear motors. There are applications where more than one cartesian robots are required to perform a common task. The focus of the research presented in this thesis is the collision free path planning for multiple cartesian robots sharing the same task space. The objective of this research is to obtain or derive necessary algorithms to coordinate multiple cartesian robots sharing the same workspace. Using path planning algorithms with collision avoidance, the desired task is achieved based on the kinematic model of the complete robotic system which is rooted in the spatial operator algebra. Path planning methods are applied to the cartesian robots and the algorithms to find collision-free path for the cartesian robots are developed.Yüksek LisansM.Sc

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Planning in constraint space for multi-body manipulation tasks

    Get PDF
    Robots are inherently limited by physical constraints on their link lengths, motor torques, battery power and structural rigidity. To thrive in circumstances that push these limits, such as in search and rescue scenarios, intelligent agents can use the available objects in their environment as tools. Reasoning about arbitrary objects and how they can be placed together to create useful structures such as ramps, bridges or simple machines is critical to push beyond one's physical limitations. Unfortunately, the solution space is combinatorial in the number of available objects and the configuration space of the chosen objects and the robot that uses the structure is high dimensional. To address these challenges, we propose using constraint satisfaction as a means to test the feasibility of candidate structures and adopt search algorithms in the classical planning literature to find sufficient designs. The key idea is that the interactions between the components of a structure can be encoded as equality and inequality constraints on the configuration spaces of the respective objects. Furthermore, constraints that are induced by a broadly defined action, such as placing an object on another, can be grouped together using logical representations such as Planning Domain Definition Language (PDDL). Then, a classical planning search algorithm can reason about which set of constraints to impose on the available objects, iteratively creating a structure that satisfies the task goals and the robot constraints. To demonstrate the effectiveness of this framework, we present both simulation and real robot results with static structures such as ramps, bridges and stairs, and quasi-static structures such as lever-fulcrum simple machines.Ph.D

    Learning of Generalized Manipulation Strategies in Service Robotics

    Get PDF
    This thesis makes a contribution to autonomous robotic manipulation. The core is a novel constraint-based representation of manipulation tasks suitable for flexible online motion planning. Interactive learning from natural human demonstrations is combined with parallelized optimization to enable efficient learning of complex manipulation tasks with limited training data. Prior planning results are encoded automatically into the model to reduce planning time and solve the correspondence problem
    corecore