2,262 research outputs found

    A Combinatorial Analog of a Theorem of F.J.Dyson

    Get PDF
    Tucker's Lemma is a combinatorial analog of the Borsuk-Ulam theorem and the case n=2 was proposed by Tucker in 1945. Numerous generalizations and applications of the Lemma have appeared since then. In 2006 Meunier proved the Lemma in its full generality in his Ph.D. thesis. There are generalizations and extensions of the Borsuk-Ulam theorem that do not yet have combinatorial analogs. In this note, we give a combinatorial analog of a result of Freeman J. Dyson and show that our result is equivalent to Dyson's theorem. As with Tucker's Lemma, we hope that this will lead to generalizations and applications and ultimately a combinatorial analog of Yang's theorem of which both Borsuk-Ulam and Dyson are special cases.Comment: Original version: 7 pages, 2 figures. Revised version: 12 pages, 4 figures, revised proofs. Final revised version: 9 pages, 2 figures, revised proof

    Bifurcations in the Space of Exponential Maps

    Full text link
    This article investigates the parameter space of the exponential family zexp(z)+κz\mapsto \exp(z)+\kappa. We prove that the boundary (in \C) of every hyperbolic component is a Jordan arc, as conjectured by Eremenko and Lyubich as well as Baker and Rippon. In fact, we prove the stronger statement that the exponential bifurcation locus is connected in \C, which is an analog of Douady and Hubbard's celebrated theorem that the Mandelbrot set is connected. We show furthermore that \infty is not accessible through any nonhyperbolic ("queer") stable component. The main part of the argument consists of demonstrating a general "Squeezing Lemma", which controls the structure of parameter space near infinity. We also prove a second conjecture of Eremenko and Lyubich concerning bifurcation trees of hyperbolic components.Comment: 29 pages, 3 figures. The main change in the new version is the introduction of Theorem 1.1 on the connectivity of the bifurcation locus, which follows from the results of the original version but was not explicitly stated. Also, some small revisions have been made and references update

    Latt\`es maps and combinatorial expansion

    Full text link
    A Latt\`es map f ⁣:C^C^f\colon \hat{\mathbb{C}}\rightarrow \hat{\mathbb{C}} is a rational map that is obtained from a finite quotient of a conformal torus endomorphism. We characterize Latt\`es maps by their combinatorial expansion behavior.Comment: 41 pages, 3 figures. arXiv admin note: text overlap with arXiv:1109.2980; and with arXiv:1009.3647 by other author

    Quasisymmetric parametrizations of two-dimensional metric spheres

    Full text link
    We study metric spaces homeomorphic to the 2-sphere, and find conditions under which they are quasisymmetrically homeomorphic to the standard 2-sphere. As an application of our main theorem we show that an Ahlfors 2-regular, linearly locally contractible metric 2-sphere is quasisymmetrically homeomorphic to the standard 2-sphere, answering a question of Heinonen and Semmes

    Thurston obstructions and Ahlfors regular conformal dimension

    Get PDF
    Let f:S2S2f: S^2 \to S^2 be an expanding branched covering map of the sphere to itself with finite postcritical set PfP_f. Associated to ff is a canonical quasisymmetry class \GGG(f) of Ahlfors regular metrics on the sphere in which the dynamics is (non-classically) conformal. We show \inf_{X \in \GGG(f)} \hdim(X) \geq Q(f)=\inf_\Gamma \{Q \geq 2: \lambda(f_{\Gamma,Q}) \geq 1\}. The infimum is over all multicurves ΓS2Pf\Gamma \subset S^2-P_f. The map fΓ,Q:RΓRΓf_{\Gamma,Q}: \R^\Gamma \to \R^\Gamma is defined by fΓ,Q(γ)=[γ]Γδγdeg(f:δγ)1Q[γ], f_{\Gamma, Q}(\gamma) =\sum_{[\gamma']\in\Gamma} \sum_{\delta \sim \gamma'} \deg(f:\delta \to \gamma)^{1-Q}[\gamma'], where the second sum is over all preimages δ\delta of γ\gamma freely homotopic to γ\gamma' in S2PfS^2-P_f, and λ(fΓ,Q) \lambda(f_{\Gamma,Q}) is its Perron-Frobenius leading eigenvalue. This generalizes Thurston's observation that if Q(f)>2Q(f)>2, then there is no ff-invariant classical conformal structure.Comment: Minor revisions are mad
    corecore