2,165 research outputs found

    First Evaluation of the CPU, GPGPU and MIC Architectures for Real Time Particle Tracking based on Hough Transform at the LHC

    Full text link
    Recent innovations focused around {\em parallel} processing, either through systems containing multiple processors or processors containing multiple cores, hold great promise for enhancing the performance of the trigger at the LHC and extending its physics program. The flexibility of the CMS/ATLAS trigger system allows for easy integration of computational accelerators, such as NVIDIA's Tesla Graphics Processing Unit (GPU) or Intel's \xphi, in the High Level Trigger. These accelerators have the potential to provide faster or more energy efficient event selection, thus opening up possibilities for new complex triggers that were not previously feasible. At the same time, it is crucial to explore the performance limits achievable on the latest generation multicore CPUs with the use of the best software optimization methods. In this article, a new tracking algorithm based on the Hough transform will be evaluated for the first time on a multi-core Intel Xeon E5-2697v2 CPU, an NVIDIA Tesla K20c GPU, and an Intel \xphi\ 7120 coprocessor. Preliminary time performance will be presented.Comment: 13 pages, 4 figures, Accepted to JINS

    Massively Parallel Computing and the Search for Jets and Black Holes at the LHC

    Full text link
    Massively parallel computing at the LHC could be the next leap necessary to reach an era of new discoveries at the LHC after the Higgs discovery. Scientific computing is a critical component of the LHC experiment, including operation, trigger, LHC computing GRID, simulation, and analysis. One way to improve the physics reach of the LHC is to take advantage of the flexibility of the trigger system by integrating coprocessors based on Graphics Processing Units (GPUs) or the Many Integrated Core (MIC) architecture into its server farm. This cutting edge technology provides not only the means to accelerate existing algorithms, but also the opportunity to develop new algorithms that select events in the trigger that previously would have evaded detection. In this article we describe new algorithms that would allow to select in the trigger new topological signatures that include non-prompt jet and black hole--like objects in the silicon tracker.Comment: 15 pages, 11 figures, submitted to NIM

    Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Get PDF
    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data

    Massively Parallel Computing at the Large Hadron Collider up to the HL-LHC

    Full text link
    As the Large Hadron Collider (LHC) continues its upward progression in energy and luminosity towards the planned High-Luminosity LHC (HL-LHC) in 2025, the challenges of the experiments in processing increasingly complex events will also continue to increase. Improvements in computing technologies and algorithms will be a key part of the advances necessary to meet this challenge. Parallel computing techniques, especially those using massively parallel computing (MPC), promise to be a significant part of this effort. In these proceedings, we discuss these algorithms in the specific context of a particularly important problem: the reconstruction of charged particle tracks in the trigger algorithms in an experiment, in which high computing performance is critical for executing the track reconstruction in the available time. We discuss some areas where parallel computing has already shown benefits to the LHC experiments, and also demonstrate how a MPC-based trigger at the CMS experiment could not only improve performance, but also extend the reach of the CMS trigger system to capture events which are currently not practical to reconstruct at the trigger level.Comment: 14 pages, 6 figures. Proceedings of 2nd International Summer School on Intelligent Signal Processing for Frontier Research and Industry (INFIERI2014), to appear in JINST. Revised version in response to referee comment

    A Combinatorial Solution to Non-Rigid 3D Shape-to-Image Matching

    Get PDF
    We propose a combinatorial solution for the problem of non-rigidly matching a 3D shape to 3D image data. To this end, we model the shape as a triangular mesh and allow each triangle of this mesh to be rigidly transformed to achieve a suitable matching to the image. By penalising the distance and the relative rotation between neighbouring triangles our matching compromises between image and shape information. In this paper, we resolve two major challenges: Firstly, we address the resulting large and NP-hard combinatorial problem with a suitable graph-theoretic approach. Secondly, we propose an efficient discretisation of the unbounded 6-dimensional Lie group SE(3). To our knowledge this is the first combinatorial formulation for non-rigid 3D shape-to-image matching. In contrast to existing local (gradient descent) optimisation methods, we obtain solutions that do not require a good initialisation and that are within a bound of the optimal solution. We evaluate the proposed method on the two problems of non-rigid 3D shape-to-shape and non-rigid 3D shape-to-image registration and demonstrate that it provides promising results.Comment: 10 pages, 7 figure
    corecore