34,517 research outputs found

    Crew Scheduling for Netherlands Railways: "destination: customer"

    Get PDF
    : In this paper we describe the use of a set covering model with additional constraints for scheduling train drivers and conductors for the Dutch railway operator NS Reizigers. The schedules were generated according to new rules originating from the project "Destination: Customer" ("Bestemming: Klant" in Dutch). This project is carried out by NS Reizigers in order to increase the quality and the punctuality of its train services. With respect to the scheduling of drivers and conductors, this project involves the generation of efficient and acceptable duties with a high robustness against the transfer of delays of trains. A key issue for the acceptability of the duties is the included amount of variation per duty. The applied set covering model is solved by dynamic column generation techniques, Lagrangean relaxation and powerful heuristics. The model and the solution techniques are part of the TURNI system, which is currently used by NS Reizigers for carrying out several analyses concerning the required capacities of the depots. The latter are strongly influenced by the new rules.crew scheduling;dynamic column generation;lagrange relaxation;railways;set covering model

    Subclass Discriminant Analysis of Morphological and Textural Features for HEp-2 Staining Pattern Classification

    Get PDF
    Classifying HEp-2 fluorescence patterns in Indirect Immunofluorescence (IIF) HEp-2 cell imaging is important for the differential diagnosis of autoimmune diseases. The current technique, based on human visual inspection, is time-consuming, subjective and dependent on the operator's experience. Automating this process may be a solution to these limitations, making IIF faster and more reliable. This work proposes a classification approach based on Subclass Discriminant Analysis (SDA), a dimensionality reduction technique that provides an effective representation of the cells in the feature space, suitably coping with the high within-class variance typical of HEp-2 cell patterns. In order to generate an adequate characterization of the fluorescence patterns, we investigate the individual and combined contributions of several image attributes, showing that the integration of morphological, global and local textural features is the most suited for this purpose. The proposed approach provides an accuracy of the staining pattern classification of about 90%

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful

    An output-sensitive algorithm for the minimization of 2-dimensional String Covers

    Full text link
    String covers are a powerful tool for analyzing the quasi-periodicity of 1-dimensional data and find applications in automata theory, computational biology, coding and the analysis of transactional data. A \emph{cover} of a string TT is a string CC for which every letter of TT lies within some occurrence of CC. String covers have been generalized in many ways, leading to \emph{k-covers}, \emph{λ\lambda-covers}, \emph{approximate covers} and were studied in different contexts such as \emph{indeterminate strings}. In this paper we generalize string covers to the context of 2-dimensional data, such as images. We show how they can be used for the extraction of textures from images and identification of primitive cells in lattice data. This has interesting applications in image compression, procedural terrain generation and crystallography

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models

    Supervising Offline Partial Evaluation of Logic Programs using Online Techniques

    No full text
    A major impediment for more widespread use of offline partial evaluation is the difficulty of obtaining and maintaining annotations for larger, realistic programs. Existing automatic binding-time analyses still only have limited applicability and annotations often have to be created or improved and maintained by hand, leading to errors. We present a technique to help overcome this problem by using online control techniques which supervise the specialisation process in order to help the development and maintenance of correct annotations by identifying errors. We discuss an implementation in the Logen system and show on a series of examples that this approach is effective: very few false alarms were raised while infinite loops were detected quickly. We also present the integration of this technique into a web interface, which highlights problematic annotations directly in the source code. A method to automatically fix incorrect annotations is presented, allowing the approach to be also used as a pragmatic binding time analysis. Finally we show how our method can be used for efficiently locating built-in errors in Prolog source code
    corecore