625 research outputs found

    Estimation of origin-destination matrix from traffic counts: the state of the art

    Get PDF
    The estimation of up-to-date origin-destination matrix (ODM) from an obsolete trip data, using current available information is essential in transportation planning, traffic management and operations. Researchers from last 2 decades have explored various methods of estimating ODM using traffic count data. There are two categories of ODM; static and dynamic ODM. This paper presents studies on both the issues of static and dynamic ODM estimation, the reliability measures of the estimated matrix and also the issue of determining the set of traffic link count stations required to acquire maximum information to estimate a reliable matrix

    Estimation of origin-destination matrix from traffic counts: the state of the art

    Get PDF
    The estimation of up-to-date origin-destination matrix (ODM) from an obsolete trip data, using current available information is essential in transportation planning, traffic management and operations. Researchers from last 2 decades have explored various methods of estimating ODM using traffic count data. There are two categories of ODM; static and dynamic ODM. This paper presents studies on both the issues of static and dynamic ODM estimation, the reliability measures of the estimated matrix and also the issue of determining the set of traffic link count stations required to acquire maximum information to estimate a reliable matrix

    Estimation/updating of origin-destination flows: recent trends and opportunities from trajectory data

    Get PDF
    Understanding the spatial and temporal dynamics of mobility demand is essential for many applications over the entire transport domain, from planning and policy assessment to operation, control, and management. Typically, mobility demand is represented by origin-destination (o-d) flows, each representing the number of trips from one traffic zone to another, for a certain trip purpose and mode of transport, in a given time interval (Cascetta, 2009, Ortuzar and Willumsen, 2011). O-d flows have been generally unobservable for decades, thus the problem of o-d matrix estimation is still one of the most challenging in transportation studies. In recent times, unprecedented tracing and tracking capabilities have become available. The pervasive penetration of sensing devices (smartphones, black boxes, smart cards, ...) adopting a variety of tracing technologies/methods (GPS, Bluetooth, ...) could make in many cases o-d flows now observable. The increasing availability of trajectory data sources has provided new opportunities to enhance observability of human mobility and travel patterns between origins and destinations, recently explored by researchers and practitioners, bringing innovation and new research directions on origin-destination (o-d) matrix estimation. The purpose of this thesis is to develop a deep understanding of the opportunities and the limitations of trajectory data to assess its potential for ameliorating the o-d flows estimation/updating problem and for conducting o-d related analysis. The proposed work involves both real trajectory data analysis and laboratory experiments based on synthetic data to investigate the implications of the trajectory data sample distinctive features (e.g. sample representativeness and bias) on demand flows accuracy. Final considerations and results might provide useful guidelines for researchers and practitioners dealing with various types of trajectory data sample and conducting o-d related applications

    Comparative Assessment on Static O-D Synthesis

    Get PDF
    Recognizing the benefits of data and the information it provides to travel demand is pertinent to network planning and design. Technological advances have led the ability to produce large quantities and types of data and as a result, many origin-destination (O-D) estimation techniques have been developed to accommodate this data. In contrast to the abundant choices on data types, data quantity and estimation procedures, there lacks a common framework to assess these methods. Without consistency in a baseline foundation, the performances of the methodologies can vary greatly based on each individual assumption. This research addresses the need for techniques to be tested on a common framework by establishing a baseline condition for static O-D estimation through a synthetic Vissim model of the Sioux Falls network as a case study area. The model is used to generate a master dataset, representing the ground-truth, and a subset of the master dataset, emulating the data collected from real world technologies. The subset of data is used as the input for the O-D estimation techniques where the input is varied to evaluate the effects of different levels of coverage/penetration of each data type on estimation results. A total of five estimation techniques developed by Cascetta and Postorino (2001), Castillo et al. (2008b), Parry and Hazelton (2012), Feng et al. (2015) and X. Yang et al. (2017) are tested with three data types (link counts, partial traces, and full traces) and two traffic assignment conditions (all-or-nothing and user equilibrium). The result of this research highlights the uniqueness of each network situation and highlights the outcomes of each approach. The wealth of data does not directly equal better information for every methodology. The insights that each data type provides each estimation technique reveals different results. The findings of this research demonstrate and supports that an established testbed framework supports and enhances future O-D estimation scenarios as it pertains to general O-D estimation and extensions of existing techniques

    DTALite: A queue-based mesoscopic traffic simulator for fast model evaluation and calibration

    Get PDF
    abstract: A number of emerging dynamic traffic analysis applications, such as regional or statewide traffic assignment, require a theoretically rigorous and computationally efficient model to describe the propagation and dissipation of system congestion with bottleneck capacity constraints. An open-source light-weight dynamic traffic assignment (DTA) package, namely DTALite, has been developed to allow a rapid utilization of advanced dynamic traffic analysis capabilities. This paper describes its three major modeling components: (1) a light-weight dynamic network loading simulator that embeds Newell’s simplified kinematic wave model; (2) a mesoscopic agent-based DTA procedure to incorporate driver’s heterogeneity; and (3) an integrated traffic assignment and origin–destination demand calibration system that can iteratively adjust path flow volume and distribution to match the observed traffic counts. A number of real-world test cases are described to demonstrate the effectiveness and performance of the proposed models under different network and data availability conditions.The final version of this article, as published in Cogent Engineering, can be viewed online at: https://www.cogentoa.com/article/10.1080/23311916.2014.96134
    • …
    corecore