18 research outputs found

    Integrated RF oscillators and LO signal generation circuits

    Get PDF
    This thesis deals with fully integrated LC oscillators and local oscillator (LO) signal generation circuits. In communication systems a good-quality LO signal for up- and down-conversion in transmitters is needed. The LO signal needs to span the required frequency range and have good frequency stability and low phase noise. Furthermore, most modern systems require accurate quadrature (IQ) LO signals. This thesis tackles these challenges by presenting a detailed study of LC oscillators, monolithic elements for good-quality LC resonators, and circuits for IQ-signal generation and for frequency conversion, as well as many experimental circuits. Monolithic coils and variable capacitors are essential, and this thesis deals with good structures of these devices and their proper modeling. As experimental test devices, over forty monolithic inductors and thirty varactors have been implemented, measured and modeled. Actively synthesized reactive elements were studied as replacements for these passive devices. At first glance these circuits show promising characteristics, but closer noise and nonlinearity analysis reveals that these circuits suffer from high noise levels and a small dynamic range. Nine circuit implementations with various actively synthesized variable capacitors were done. Quadrature signal generation can be performed with three different methods, and these are analyzed in the thesis. Frequency conversion circuits are used for alleviating coupling problems or to expand the number of frequency bands covered. The thesis includes an analysis of single-sideband mixing, frequency dividers, and frequency multipliers, which are used to perform the four basic arithmetical operations for the frequency tone. Two design cases are presented. The first one is a single-sideband mixing method for the generation of WiMedia UWB LO-signals, and the second one is a frequency conversion unit for a digital period synthesizer. The last part of the thesis presents five research projects. In the first one a temperature-compensated GaAs MESFET VCO was developed. The second one deals with circuit and device development for an experimental-level BiCMOS process. A cable-modem RF tuner IC using a SiGe process was developed in the third project, and a CMOS flip-chip VCO module in the fourth one. Finally, two frequency synthesizers for UWB radios are presented

    Analysis and design of wideband voltage controlled oscillators using self-oscillating active inductors.

    Get PDF
    Voltage controlled oscillators (VCOs) are essential components of RF circuits used in transmitters and receivers as sources of carrier waves with variable frequencies. This, together with a rapid development of microelectronic circuits, led to an extensive research on integrated implementations of the oscillator circuits. One of the known approaches to oscillator design employs resonators with active inductors electronic circuits simulating the behavior of passive inductors using only transistors and capacitors. Such resonators occupy only a fraction of the silicon area necessary for a passive inductor, and thus allow to use chip area more eectively. The downsides of the active inductor approach include: power consumption and noise introduced by transistors. This thesis presents a new approach to active inductor oscillator design using selfoscillating active inductor circuits. The instability necessary to start oscillations is provided by the use of a passive RC network rather than a power consuming external circuit employed in the standard oscillator approach. As a result, total power consumption of the oscillator is improved. Although, some of the active inductors with RC circuits has been reported in the literature, there has been no attempt to utilise this technique in wideband voltage controlled oscillator design. For this reason, the dissertation presents a thorough investigation of self-oscillating active inductor circuits, providing a new set of design rules and related trade-os. This includes: a complete small signal model of the oscillator, sensitivity analysis, large signal behavior of the circuit and phase noise model. The presented theory is conrmed by extensive simulations of wideband CMOS VCO circuit for various temperatures and process variations. The obtained results prove that active inductor oscillator performance is obtained without the use of standard active compensation circuits. Finally, the concept of self-oscillating active inductor has been employed to simple and fast OOK (On-Off Keying) transmitter showing energy eciency comparable to the state of the art implementations reported in the literature

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Cryogenic single chip electron spin resonance detectors

    Get PDF
    Methods based on the electron spin resonance (ESR) phenomenon are used to study paramagnetic systems at temperatures that ranges from 1000 to below 1 K. Commercially available spectrometers achieve spin sensitivities in the order of 10^(10) spins/¿Hz at room temperature on sample with volumes in the order of few µl. This results can be improved by cooling the system at cryogenic temperatures, where the larger magnetization of paramagnetic samples cause the detected signal to increase. Furthermore operation at high field (frequency) turns as well in an improved spin sensitivity. For what it concern the spin sensitivity operation at cryogenic temperature and high frequency are thus beneficial. In 2008 the group of Dr. G. Boero proposed a novel detection method based on the integration of all the element responsible for the sensitivity on a single silicon chip. The methodology allowed to study sample with nanoliter scale volume with spin sensitivity that were at least 2 orders of magnitude better than the best commercial spectrometer. The proposed method has performance that are comparable with the one obtained on similar scales with micro-resonator based spectroscopy tool. During this thesis I have investigated the possibility of extending the use of the detection method from frequency that goes from 20 to 200 GHz and temperatures that range from 77 to 4 K. In this frame several domains were touched. First of all the design of CMOS silicon oscillators operating at frequency which are closed to the most modern technology frequency limit. The lack of model valid for the target frequencies and the needs of limiting the power consumption for matching the limited cooling power of cryogenic systems, made the subject a challenging and interesting research topic itself. The study produces a remarkable result of a system operating at about 170 GHz with a power consumption of about 3 mW at room temperature and about 1.5 mW at 4 K. With the realized devices the first measurements of integrated silicon CMOS LC oscillators at temperature below 77 K were performed. From this measurements we could confirm the presence of expected effect, such as minimum power consumption reduction and oscillator frequency increase. In addition to that, by measuring the frequency-bias characteristic, it's been noticed a succession of smooth region and sharp transitions. This jumps are tentatively attributed to the random telegraph signal (RTS) effect that is supposed to be the main responsible for the flicker noise in sub-micrometer MOS devices. Since the impact of RTS on the performance of highly scaled transistor performance is expected to grow with the technology scale down, measurement methods based on LC oscillator, that shows better sensitivity if compared with nowadays employed methods, might allow to better understand the mechanism governing the effect and to develop technological strategy for lowering the impact on the future CMOS technology node. The realized devices have finally demonstrated ESR performances that are comparable with the most recent publication done with miniaturized resonators on mass-limited samples. In fact sensitivity of about 10^(7) spins/¿Hz at 50 GHz and 300 K and of about 10^(6) spins/¿Hz at 28 GHz and 4 K, at least 3 orders of magnitude better then commercially available state of the art devices, have been proven

    ANALYSIS AND DESIGN OF SILICON-BASED MILLIMETER-WAVE AMPLIFIERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Clock Generation Design for Continuous-Time Sigma-Delta Analog-To-Digital Converter in Communication Systems

    Get PDF
    Software defined radio, a highly digitized wireless receiver, has drawn huge attention in modern communication system because it can not only benefit from the advanced technologies but also exploit large digital calibration of digital signal processing (DSP) to optimize the performance of receivers. Continuous-time (CT) bandpass sigma-delta (ΣΔ) modulator, used as an RF-to-digital converter, has been regarded as a potential solution for software defined ratio. The demand to support multiple standards motivates the development of a broadband CT bandpass ΣΔ which can cover the most commercial spectrum of 1GHz to 4GHz in a modern communication system. Clock generation, a major building block in radio frequency (RF) integrated circuits (ICs), usually uses a phase-locked loop (PLL) to provide the required clock frequency to modulate/demodulate the informative signals. This work explores the design of clock generation in RF ICs. First, a 2-16 GHz frequency synthesizer is proposed to provide the sampling clocks for a programmable continuous-time bandpass sigma-delta (ΣΔ) modulator in a software radio receiver system. In the frequency synthesizer, a single-sideband mixer combines feed-forward and regenerative mixing techniques to achieve the wide frequency range. Furthermore, to optimize the excess loop delay in the wideband system, a phase-tunable clock distribution network and a clock-controlled quantizer are proposed. Also, the false locking of regenerative mixing is solved by controlling the self-oscillation frequency of the CML divider. The proposed frequency synthesizer performs excellent jitter performance and efficient power consumption. Phase noise and quadrature phase accuracy are the common tradeoff in a quadrature voltage-controlled oscillator. A larger coupling ratio is preferred to obtain good phase accuracy but suffer phase noise performance. To address these fundamental trade-offs, a phasor-based analysis is used to explain bi-modal oscillation and compute the quadrature phase errors given by inevitable mismatches of components. Also, the ISF is used to estimate the noise contribution of each major noise source. A CSD QVCO is first proposed to eliminate the undesired bi-modal oscillation and enhance the quadrature phase accuracy. The second work presents a DCC QVCO. The sophisticated dynamic current-clipping coupling network reduces injecting noise into LC tank at most vulnerable timings (zero crossing points). Hence, it allows the use of strong coupling ratio to minimize the quadrature phase sensitivity to mismatches without degrading the phase noise performance. The proposed DCC QVCO is implemented in a 130-nm CMOS technology. The measured phase noise is -121 dBc/Hz at 1MHz offset from a 5GHz carrier. The QVCO consumes 4.2mW with a 1-V power supply, resulting in an outstanding Figure of Merit (FoM) of 189 dBc/Hz. Frequency divider is one of the most power hungry building blocks in a PLL-based frequency synthesizer. The complementary injection-locked frequency divider is proposed to be a low-power solution. With the complimentary injection schemes, the dividers can realize both even and odd division modulus, performing a more than 100% locking range to overcome the PVT variation. The proposed dividers feature excellent phase noise. They can be used for multiple-phase generation, programmable phase-switching frequency dividers, and phase-skewing circuits

    Characterization of 28 nm FDSOI MOS and application to the design of a low-power 2.4 GHz LNA

    Get PDF
    IoT is expected to connect billions of devices all over world in the next years, and in a near future, it is expected to use LR-WPAN in a wide variety of applications. Not all the devices will require of high performance but will require of low power hungry systems since most of them will be powered with a battery. Conventional CMOS technologies cannot cover these needs even scaling it to very small regimes, which appear other problems. Hence, new technologies are emerging to cover the needs of this devices. One promising technology is the UTBB FDSOI, which achieves good performance with very good energy efficiency. This project characterizes this technology to obtain a set of parameters of interest for analog/RF design. Finally, with the help of a low-power design methodology (gm/Id approach), a design of an ULP ULV LNA is performed to check the suitability of this technology for IoT

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Radio Electronics

    Get PDF
    corecore