46 research outputs found

    Fourier operational matrices of differentiation . . .

    Get PDF
    This paper introduces Fourier operational matrices of differentiation and transmission for solving high-order linear differential and difference equations with constant coefficients. Moreover, we extend our methods for generalized Pantograph equations with variable coefficients by using Legendre Gauss collocation nodes. In the case of numerical solution of Pantograph equation, an error problem is constructed by means of the residual function and this error problem is solved by using the mentioned collocation scheme. When the exact solution of the problem is not known, the absolute errors can be computed approximately by the numerical solution of the error problem. The reliability and efficiency of the presented approaches are demonstrated by several numerical examples, and also the results are compared with different methods

    A new numerical method to solve pantograph delay differential equations with convergence analysis

    Get PDF
    Abstract The main aim presented in this article is to provide an efficient transferred Legendre pseudospectral method for solving pantograph delay differential equations. At the first step, we transform the problem into a continuous-time optimization problem and then utilize a transferred Legendre pseudospectral method to discretize the problem. By solving this discrete problem, we can attain the pointwise and continuous estimated solutions for the major pantograph delay differential equation. The convergence of method has been considered. Also, numerical experiments are described to show the performance and precision of the presented technique. Moreover, the obtained results are compared with those from other techniques

    SAID-BALL POLYNOMIALS FOR SOLVING LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

    Get PDF
    Said-Ball polynomials with collocation method are used to numerically solve a system of linear ordinary differential equations. The matrix forms of Said-Ball polynomials of the solution, derivatives, and conditions are done. The linear system of ordinary differential equations with appropriate conditions is reduced to the linear algebraic equations system with unknown Said-Ball coefficients. Solving the resulting system determines the coefficients of Said-Ball polynomials. By Substituting these values in the polynomial, we get the problem\u27s exact and approximate solutions. The obtaining numerical results show the proposed method\u27s accuracy and reliability when compared with the other works and exact solution

    A new approach to find an approximate solution of linear initial value problems with high degree of accuracy

    Get PDF
    This work investigates a new approach to find closed form solution to linear initial value problems (IVP). Classical Bernoulli polynomials have been used to derive a finite set of orthonormal polynomials and a finite operational matrix to simplify derivatives in IVP. These orthonormal polynomials together with the operational matrix of relevant order provides a robust approximation to the solution of a linear initial value problem by converting the IVP into a set of algebraic equations. Depending upon the nature of a problem, a polynomial of degree n or numerical approximation can be obtained. The technique has been demonstrated through four examples. In each example, obtained solution has been compared with available exact or numerical solution. High degree of accuracy has been observed in numerical values of solutions for considered problems

    Analytical Approximate Solutions for a General Class of Nonlinear Delay Differential Equations

    Get PDF
    We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods

    Numerical solution of linear time delay systems using Chebyshev-tau spectral method

    Get PDF
    In this paper, a hybrid method based on method of steps and a Chebyshev-tau spectral method for solving linear time delay systems of differential equations is proposed. The method first converts the time delay system to a system of ordinary dierential equations by the method of steps and then employs Chebyshev polynomials to construct an approx- imate solution for the system. In fact, the solution of the system is expanded in terms of orthogonal Chebyshev polynomials which reduces the solution of the system to the solution of a system of algebraic equations. Also, we transform the coefficient matrix of the algebraic system to a block quasi upper triangular matrix and the latter system can be solved more efficiently than the first one. Furthermore, using orthogonal Chebyshev polynomials enables us to apply fast Fourier transform for calculating matrix-vector multiplications which makes the proposed method to be more efficient. Consistency, stability and convergence analysis of the method are provided. Numerous numerical examples are given to demonstrate efficiency and accuracy of the method. Comparisons are made with available literature
    corecore