261 research outputs found

    Optimal Control for Automotive Powertrain Applications

    Full text link
    Optimal Control (OC) is essentially a mathematical extremal problem. The procedure consists on the definition of a criterion to minimize (or maximize), some constraints that must be fulfilled and boundary conditions or disturbances affecting to the system behavior. The OC theory supplies methods to derive a control trajectory that minimizes (or maximizes) that criterion. This dissertation addresses the application of OC to automotive control problems at the powertrain level, with emphasis on the internal combustion engine. The necessary tools are an optimization method and a mathematical representation of the powertrain. Thus, the OC theory is reviewed with a quantitative analysis of the advantages and drawbacks of the three optimization methods available in literature: dynamic programming, Pontryagin minimum principle and direct methods. Implementation algorithms for these three methods are developed and described in detail. In addition to that, an experimentally validated dynamic powertrain model is developed, comprising longitudinal vehicle dynamics, electrical motor and battery models, and a mean value engine model. OC can be utilized for three different purposes: 1. Applied control, when all boundaries can be accurately defined. The engine control is addressed with this approach assuming that a the driving cycle is known in advance, translating into a large mathematical problem. Two specific cases are studied: the management of a dual-loop EGR system, and the full control of engine actuators, namely fueling rate, SOI, EGR and VGT settings. 2. Derivation of near-optimal control rules, to be used if some disturbances are unknown. In this context, cycle-specific engine calibrations calculation, and a stochastic feedback control for power-split management in hybrid vehicles are analyzed. 3. Use of OC trajectories as a benchmark or base line to improve the system design and efficiency with an objective criterion. OC is used to optimize the heat release law of a diesel engine and to size a hybrid powertrain with a further cost analysis. OC strategies have been applied experimentally in the works related to the internal combustion engine, showing significant improvements but non-negligible difficulties, which are analyzed and discussed. The methods developed in this dissertation are general and can be extended to other criteria if appropriate models are available.El Control Óptimo (CO) es esencialmente un problema matemático de búsqueda de extremos, consistente en la definición de un criterio a minimizar (o maximizar), restricciones que deben satisfacerse y condiciones de contorno que afectan al sistema. La teoría de CO ofrece métodos para derivar una trayectoria de control que minimiza (o maximiza) ese criterio. Esta Tesis trata la aplicación del CO en automoción, y especialmente en el motor de combustión interna. Las herramientas necesarias son un método de optimización y una representación matemática de la planta motriz. Para ello, se realiza un análisis cuantitativo de las ventajas e inconvenientes de los tres métodos de optimización existentes en la literatura: programación dinámica, principio mínimo de Pontryagin y métodos directos. Se desarrollan y describen los algoritmos para implementar estos métodos así como un modelo de planta motriz, validado experimentalmente, que incluye la dinámica longitudinal del vehículo, modelos para el motor eléctrico y las baterías, y un modelo de motor de combustión de valores medios. El CO puede utilizarse para tres objetivos distintos: 1. Control aplicado, en caso de que las condiciones de contorno estén definidas. Puede aplicarse al control del motor de combustión para un ciclo de conducción dado, traduciéndose en un problema matemático de grandes dimensiones. Se estudian dos casos particulares: la gestión de un sistema de EGR de doble lazo, y el control completo del motor, en particular de las consignas de inyección, SOI, EGR y VGT. 2. Obtención de reglas de control cuasi-óptimas, aplicables en casos en los que no todas las perturbaciones se conocen. A este respecto, se analizan el cálculo de calibraciones de motor específicas para un ciclo, y la gestión energética de un vehículo híbrido mediante un control estocástico en bucle cerrado. 3. Empleo de trayectorias de CO como comparativa o referencia para tareas de diseño y mejora, ofreciendo un criterio objetivo. La ley de combustión así como el dimensionado de una planta motriz híbrida se optimizan mediante el uso de CO. Las estrategias de CO han sido aplicadas experimentalmente en los trabajos referentes al motor de combustión, poniendo de manifiesto sus ventajas sustanciales, pero también analizando dificultades y líneas de actuación para superarlas. Los métodos desarrollados en esta Tesis Doctoral son generales y aplicables a otros criterios si se dispone de los modelos adecuados.El Control Òptim (CO) és essencialment un problema matemàtic de cerca d'extrems, que consisteix en la definició d'un criteri a minimitzar (o maximitzar), restriccions que es deuen satisfer i condicions de contorn que afecten el sistema. La teoria de CO ofereix mètodes per a derivar una trajectòria de control que minimitza (o maximitza) aquest criteri. Aquesta Tesi tracta l'aplicació del CO en automoció i especialment al motor de combustió interna. Les ferramentes necessàries són un mètode d'optimització i una representació matemàtica de la planta motriu. Per a això, es realitza una anàlisi quantitatiu dels avantatges i inconvenients dels tres mètodes d'optimització existents a la literatura: programació dinàmica, principi mínim de Pontryagin i mètodes directes. Es desenvolupen i descriuen els algoritmes per a implementar aquests mètodes així com un model de planta motriu, validat experimentalment, que inclou la dinàmica longitudinal del vehicle, models per al motor elèctric i les bateries, i un model de motor de combustió de valors mitjans. El CO es pot utilitzar per a tres objectius diferents: 1. Control aplicat, en cas que les condicions de contorn estiguen definides. Es pot aplicar al control del motor de combustió per a un cicle de conducció particular, traduint-se en un problema matemàtic de grans dimensions. S'estudien dos casos particulars: la gestió d'un sistema d'EGR de doble llaç, i el control complet del motor, particularment de les consignes d'injecció, SOI, EGR i VGT. 2. Obtenció de regles de control quasi-òptimes, aplicables als casos on no totes les pertorbacions són conegudes. A aquest respecte, s'analitzen el càlcul de calibratges específics de motor per a un cicle, i la gestió energètica d'un vehicle híbrid mitjançant un control estocàstic en bucle tancat. 3. Utilització de trajectòries de CO com comparativa o referència per a tasques de disseny i millora, oferint un criteri objectiu. La llei de combustió així com el dimensionament d'una planta motriu híbrida s'optimitzen mitjançant l'ús de CO. Les estratègies de CO han sigut aplicades experimentalment als treballs referents al motor de combustió, manifestant els seus substancials avantatges, però també analitzant dificultats i línies d'actuació per superar-les. Els mètodes desenvolupats a aquesta Tesi Doctoral són generals i aplicables a uns altres criteris si es disposen dels models adequats.Reig Bernad, A. (2017). Optimal Control for Automotive Powertrain Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90624TESI

    A Study Model Predictive Control for Spark Ignition Engine Management and Testing

    Get PDF
    Pressure to improve spark-ignition (SI) engine fuel economy has driven thedevelopment and integration of many control actuators, creating complex controlsystems. Integration of a high number of control actuators into traditional map basedcontrollers creates tremendous challenges since each actuator exponentially increasescalibration time and investment. Model Predictive Control (MPC) strategies have thepotential to better manage this high complexity since they provide near-optimal controlactions based on system models. This research work focuses on investigating somepractical issues of applying MPC with SI engine control and testing.Starting from one dimensional combustion phasing control using spark timing(SPKT), this dissertation discusses challenges of computing the optimal control actionswith complex engine models. A nonlinear optimization is formulated to compute thedesired spark timing in real time, while considering knock and combustion variationconstraints. Three numerical approaches are proposed to directly utilize complex high-fidelity combustion models to find the optimal SPKT. A model based combustionphasing estimator that considers the influence of cycle-by-cycle combustion variations isalso integrated into the control system, making feedback and adaption functions possible.An MPC based engine management system with a higher number of controldimensions is also investigated. The control objective is manipulating throttle, externalEGR valve and SPKT to provide demanded torque (IMEP) output with minimum fuelconsumption. A cascaded control structure is introduced to simplify the formulation and solution of the MPC problem that solves for desired control actions. Sequential quadratic programming (SQP) MPC is applied to solve the nonlinear optimization problem in real time. A real-time linearization technique is used to formulate the sub-QP problems with the complex high dimensional engine system. Techniques to simplify the formulation of SQP and improve its convergence performance are also discussed in the context of tracking MPC. Strategies to accelerate online quadratic programming (QP) are explored. It is proposed to use pattern recognition techniques to “warm-start” active set QP algorithms for general linear MPC applications. The proposed linear time varying (LTV) MPC is used in Engine-in-Loop (EIL) testing to mimic the pedal actuations of human drivers who foresee the incoming traffic conditions. For SQP applications, the MPC is initialized with optimal control actions predicted by an ANN. Both proposed MPC methods significantly reduce execution time with minimal additional memory requirement

    Optimal control of a motor-integrated hybrid powertrain for a two-wheeled vehicle suitable for personal transportation

    Get PDF
    The present research aims to propose an optimized configuration of the motor integrated power-train with an optimal controller suitable for small power-train based two wheeler automobile which can increase the system level efficiency without affecting drivability. This work will be the foundation for realizing the system in a production ready vehicle for the two wheeler OEM TVS Motor Company in India. A detailed power-train model is developed (from first principles) for the scooter vehicle, which is powered by a 110 cc spark ignition (SI) engine and coupled with two types of transmission, a continuous variable transmission (CVT) and a 4-speed manual transmission (MT). Both models are capable of simulating torque and NOx emission output of the SI engine and dynamic response of the full power-train. The torque production and emission outputs of the model are compared with experimental results available from TVS Motor Company. The CVT gear ratio model is developed using an indirect method and an analytical model. Both types of powertrain models are applied to perform a simulated study of fuel consumption, NOx emission and drivability study for a particular vehicle platform. In the next stage of work, the mathematical model for a brush-less direct current machine (BLDC) with the drive system and Li-Ion battery are developed. The models are verified and calibrated with the experimental results from TVS Motor Company. The BLDC machine is integrated with both the CVT and MT powertrain models in parallel hybrid configurations and a drive cycle simulation is conducted for different static assist levels by the electrical machines. The initial test confirms the need of optimal sizing of the powertrain components as well as an optimal control system. The detailed model of the powertrain is converted to a control-oriented model which is suitable for optimal control. This is followed by multi-objective optimization of different components of the motor-integrated powertrain using a single function as well as Pareto-Optimal methods. The objective function for the multi-objective optimization is proposed to reduce the fuel consumption with battery charge sustainability with least impact on the increase of financial cost and weight of the vehicle. The optimization is conducted by a nested methodology that involves Particle Swarm Optimization and a Non-dominated sorting genetic algorithm where, concurrently, a global optimal control is developed corresponding to the multi-objective design. The global optimal controller is designed using dynamic programming. The research is concluded with an optimal controller developed using the hp-collocation method. The objective function of the dynamic programming method and hp-collocation method is proposed to reduce fuel consumption with battery charge sustainability.Open Acces

    14th International Conference on Turbochargers and Turbocharging

    Get PDF
    14th International Conference on Turbochargers and Turbocharging addresses current and novel turbocharging system choices and components with a renewed emphasis to address the challenges posed by emission regulations and market trends. The contributions focus on the development of air management solutions and waste heat recovery ideas to support thermal propulsion systems leading to high thermal efficiency and low exhaust emissions. These can be in the form of internal combustion engines or other propulsion technologies (eg. Fuel cell) in both direct drive and hybridised configuration. 14th International Conference on Turbochargers and Turbocharging also provides a particular focus on turbochargers, superchargers, waste heat recovery turbines and related air managements components in both electrical and mechanical forms

    Mathematical Methods for Design of Zone Structured Catalysts and Optimization of Inlet Trajectories in Selective Catalytic Reduction (SCR) and Three Way Catalyst (TWC)

    Get PDF
    Abgaskatalysatoren zählen zu den wichtigsten Maßnahmen, um Schadstoffemissionen von Verbrennungsmotoren zu vermindern. Mit der stetigen Verschärfung der Emissionsstandards nahm über die Jahre der Forschungsbedarf zu Abgasnachbehandlungssystemen signifikant zu. Der Fokus dieser Arbeit liegt auf der Lösung von Optimierungsproblemen im Bereich der Autoabgaskatalyse, um die Effizienz zu steigern. Dabei werden drei Problemklassen behandelt: 1) Die Light-Off-Verzögerung beim Kaltstart in Oxidationskatalysatoren, 2) Die effiziente Ammoniakdosierung bei der selektiven katalytischen Reduktion (SCR), um Ammoniakdurchbrüche zu vermeiden, 3) Die Spannungsstabilisierung der Lambda-Sonde im Drei-Wege-Katalysator (TWC) während einer Schubabschaltung. Das erste Problem wird durch eine modellbasierte mathematische Optimierung beschrieben, bei der das Beladungsprofil von gezont-strukturierten Katalysatoren auf Basis von Platingruppen-Metallen (PGM) optimiert wird. Dazu wird ein Optimierungsproblem aufgestellt, bei dem ein katalytisch aktiver Kanal in Zonen aufgeteilt wird, die mit unterschiedlichen Mengen von PGM beladen werden. Eine solche Beladung kann auch experimentell getestet werden. Die Effekte der Beladung auf Diffusionslimitierungen im Washcoat werden ebenso berücksichtigt. Ziel ist es, die axiale Verteilung der Beladung zu optimieren, wobei die Gesamtmenge an PGM konstant gehalten wird, um den Gesamtumsatz unter transienten Bedingungen zu maximieren. Dabei wird ein transientes 1D+1D-Modell mit dem impliziten Differentialgleichungslöser DASPKADJOINT numerisch gelöst und in ein nichtlineares Optimierungsproblem übersetzt, das mit einem beliebigen ableitungsbasierten nichtlinearen Optimierungslöser (NLP) behandelt werden kann. Dieses Modell wird auf zwei Beispielfälle angewandt: die CO-Oxidation auf einem Pt/Al2O3 Dieseloxidationskatalysator (DOC), um die Kaltstart-Emissionen zu minimieren, sowie die CH4-Oxidation auf Pd/Al2O3 unter Minimierung der Deaktivierungseffekte. In beiden Fällen wird beobachtet, dass bei der optimalen Lösung ein Beladungsmaximum am Kanaleingang zu einer Umsatzsteigerung führt. Die präsentierte Methode ist darüber hinaus allgemeingültig und kann auf andere Systeme mit unterschiedlicher Chemie angewandt werden, so dass auch signifikant andere Lösungen generiert werden können. Die Fähigkeit, NOx effizient durch Ammoniak zu reduzieren, ist Grundlage der SCR-Technologie für die Dieselabgasnachbehandlung. Ammoniak wird diskontinuierlich durch Zersetzung von Harnstoff-Wasser-Lösung dem SCR-Katalysator zugeführt. Bei der Anwendung im Fahrbetrieb ist es wegen hochgradig transienter Wechsel der Emissionen nicht sinnvoll, konstante Menge Ammoniak zu dosieren. Eine effiziente optimale Dosierungsstrategie ist wichtig, um einerseits hohen Umsatz zu gewährleisten und andererseits NH3-Schlupf zu vermeiden. Die Entwicklung einer optimalen Dosierungsstrategie erfordert die Anwendung einfacher, aber hinreichend akkurater mathematischer Modelle und robuster Optimierungsalgorithmen, um eine Lösung für eine große Anzahl zu optimierender Parameter zu erhalten. Mehrere Modellreduktionstechniken aus der Literatur wurden verwendet, um ein Grey-Box-Modell zu konstruieren. Die Methode der orthogonalen Kollokation über finiten Elementen (OCFE) wird genutzt, um die differential-algebraischen Gleichungen aus dem Optimierungsproblem in ein nichtlineares Programm zu überführen. Das Modell wird auf eine Simulation des WHTC-Testzyklus angewandt, um die NH3-Dosierung für jede Sekunde des Zyklus zu optimieren. Die optimale Lösung verbessert die Effizienz des Reduktion unter Einhaltung eines Schlupf-Maximums von 10 ppm zu jedem Zeitpunkt. Die präsentierte Methode lässt sich auch auf ähnliche Probleme zur Optimierung transienter Eingangsbedingungen anwenden. Im dritten Beispiel wird dieselbe Optimierungsmethode erweitert, um eine optimale Lambda-Trajektorie zu berechnen, die das Lambdasensorsignal am Katalysatorausgang stabilisiert, um Durchbrüche fetter Abgasgemische zu vermeiden. Zunächst wurde ein Beobachtermodell mit vereinfachter Kinetik entwickelt und gegen Versuchsstand-Experimente kalibriert. Direkte Kollokation auf Basis der OCFE wird genutzt, um das Optimierungsproblem in ein nichtlineares Programm zu überführen. Die optimale Lösung zeigt eine schnelle Stabilisierung der Ausgangssensor-Spannung ohne Überschwingungen. Diese Strategie verringert die Relaxationszeit der Sensorspannung signifikant, was wichtig für den Einsatz als Feedback-Controller in einem Dreiwegekatalysator wäre

    A multiscale strategy for fouling prediction and mitigation in gas turbines

    Get PDF
    Gas turbines are one of the primary sources of power for both aerospace and land-based applications. Precisely for this reason, they are often forced to operate in harsh environmental conditions, which involve the occurrence of particle ingestion by the engine. The main implications of this problem are often underestimated. The particulate in the airflow ingested by the machine can deposit or erode its internal surfaces, and lead to the variation of their aerodynamic geometry, entailing performance degradation and, possibly, a reduction in engine life. This issue affects the compressor and the turbine section and can occur for either land-based or aeronautical turbines. For the former, the problem can be mitigated (but not eliminated) by installing filtration systems. For what concern the aerospace field, filtration systems cannot be used. Volcanic eruptions and sand dust storms can send particulate to aircraft cruising altitudes. Also, aircraft operating in remote locations or low altitudes can be subjected to particle ingestion, especially in desert environments. The aim of this work is to propose different methodologies capable to mitigate the effects of fouling or predicting the performance degradation that it generates. For this purpose, both hot and cold engine sections are considered. Concerning the turbine section, new design guidelines are presented. This is because, for this specific component, the time scales of failure events due to hot deposition can be of the order of minutes, which makes any predictive model inapplicable. In this respect, design optimization techniques were applied to find the best HPT vane geometry that is less sensitive to the fouling phenomena. After that, machine learning methods were adopted to obtain a design map that can be useful in the first steps of the design phase. Moreover, after a numerical uncertainty quantification analysis, it was demonstrated that a deterministic optimization is not sufficient to face highly aleatory phenomena such as fouling. This suggests the use of robust or aggressive design techniques to front this issue. On the other hand, with respect to the compressor section, the research was mainly focused on the building of a predictive maintenance tool. This is because the time scales of failure events due to cold deposition are longer than the ones for the hot section, hence the main challenge for this component is the optimization of the washing schedule. As reported in the previous sections, there are several studies in the literature focused on this issue, but almost all of them are data-based instead of physics-based. The innovative strategy proposed here is a mixture between physics-based and data-based methodologies. In particular, a reduced-order model has been developed to predict the behaviour of the whole engine as the degradation proceeds. For this purpose, a gas path code that uses the components’ characteristic maps has been created to simulate the gas turbine. A map variation technique has been used to take into account the fouling effects on each engine component. Particularly, fouling coefficients as a function of the engine architecture, its operating conditions, and the contaminant characteristics have been created. For this purpose, both experimental and computational results have been used. Specifically for the latter, efforts have been done to develop a new numerical deposition/detachment model.Le turbine a gas sono una delle pricipali fonti di energia, sia per applicazioni aeronautiche che terrestri. Proprio per questa ragione, esse sono spesso costrette ad operare in ambienti non propriamente puliti, il che comporta l’ingestione di contaminanti solidi da parte del motore. Le principali implicazioni di questo problema sono spesso sottovalutate. Le particelle solide presenti nel flusso d’aria che il motore ingerisce durante il suo funzionamento possono depositarsi o erodere le superfici interne della macchina, e portare a variazioni alla sua aerodinamica, quindi a degrado di performance e, molto probabilmente, alla diminuzione della sua vita utile. Questo problema aflligge sia la parte del compressore che la parte della turbina, e si manifesta sia in applicazioni terrestri che aeronautiche. Per quanto riguarda la prima, la questione può essere mitigata (ma non eliminata) dall’installazione di sistemi di filtraggio all’ingresso della macchina. Per le applicazioni aeronautiche invece, i sistemi di filtraggio non possono essere utilizzati. Questo implica che il particolato presente ad alte quote, magari grazie ad eventi catastrofici quali eruzioni vulcaniche, o a basse quote, quindi ambienti deseritic, entra liberamente nella turbina a gas. Lo scopo principale di questo lavoro di tesi, è quello di proporre differenti metodologieallo scopo di mitigare gli effetti dello sporcamento o predirre il degrado che esso comporta nelle turbine a gas. Per questo scopo, sia la parte del compressore che quella della turbina sono state prese in considerazione. Per quanto riguarda la parte turbina, saranno presentate nuove guide progettuali volte al trovare la geometria che sia meno sensibile possibile al problema dello sporcamento. Dopo di ciò, i risultati ottenuti verranno trattati tramite tecniche di machine learning, ottenendo una mappa di progetto che potrà essere utile nelle prime fasi della progettazione di questi componenti. Inoltre, essendo l’analisi fin qui condotta di tipo deterministico, un’analisi delle principali fonti di incertezza verrà eseguita con l’utilizzo di tecniche derivanti dall’uncertainty quantification. Questo dimostrerà che l’analisi deterministica è troppo semplificativa, e che sarebbe opportuno spingersi verso una progettazione robusta per affrontare questa tipologia di problemi. D’altro canto, per quanto concerne la parte compressore, la ricerca è stata incentrata principalmente sulla costruzione di uno strumento predittivo, questo perchè la scala temporale del degrado dovuto alla deposizione a "freddo" è molto più dilatata rispetto a quella della sezione "calda". La trategia proposta in questo lavoro di tesi è un’insieme di modelli fisici e data-driven. In particolare, si è sviluppato un modello ad ordine ridotto per la previsione del comportamento del motore soggetto a degrado dovuto all’ingestione di particolato, durante un’intera missione aerea. Per farlo, si è generato un codice cosiddetto gas-path, che modella i singoli componenti della macchina attraverso le loro mappe caratteristiche. Quest’ultime vengono modificate, a seguito della deposizione, attraverso opportuni coefficienti di degrado. Tali coefficienti devono essere adeguatamente stimati per avere una corretta previsione degli eventi, e per fare ciò verrà proposta una strategia che comporta l’utilizzo sia di metodi sperimentali che computazionali, per la generazione di un algoritmo che avrà lo scopo di fornire come output questi coefficienti

    Simulation and modelling of the performance of radial turbochargers under unsteady flow

    Full text link
    [ES] Está fuera de toda duda que la industria del automóvil está viviendo una profunda transformación que, durante los últimos años, ha progresado a un ritmo acelerado. Debido a la crecientemente estricta regulación sobre emisiones contaminantes y la necesidad de satisfacer la siempre creciente demanda de movilidad sostenible, es necesario que los motores de combustión modernos reduzcan su consumo y emisiones manteniendo el rendimiento del motor. Para enfrentarse a este desafío, los ingenieros de investigación y desarrollo han redoblado sus esfuerzos a la hora de diseñar y mejorar los modelos unidimensionales, hasta el punto en el que el desarrollo de modelos 1D así como la simulación juegan un papel fundamental en los primeras etapas de diseño de nuevos motores y tecnologías. Al mismo tiempo, la tecnología de turbosobrealimentación se ha consolidado como una de las más efectivas a la hora de construir motores de alta eficiencia, lo que ha hecho evidente la importancia de comprender y modelar correctamente los efectos asociados a los turbogrupos. Particularmente, los fenómenos que ocurren en la turbina en condiciones de flujo fuertemente pulsante han demostrado ser complicadas de modelar y sin embargo decisivas, ya que los códigos de simulación son especialmente útiles cuando son diseñados para trabajar en condiciones realistas. Este trabajo se centra en mejorar los modelos unidimensionales actuales así como en desarrollar nuevas soluciones con el objetivo de contribuir a una mejor predicción del comportamiento de la turbina sometida a condiciones de flujo pulsante. Tanto los esfuerzos realizados en los trabajos experimentales como en los de modelado se han producido para poder proporcionar métodos que sean fáciles de adaptar a las diferentes configuraciones de turbogrupo usadas en la industria, por ello, pueden ser aplicados por ejemplo en turbinas de entrada simple y también en las cada vez más usadas turbinas de entrada doble. En cuanto al trabajo de modelado en la parte de turbina de entrada simple, el foco se ha puesto en presentar una versión mejorada de un código quasi-2D. La validación del modelo se basa en los datos experimentales que están disponibles de trabajos enteriores de la literatura, proporcionando una comparación completa entre los modelos quasi-2D y el clásico modelo 1D. La presión a la entrada y salida de la turbina se ha descompuesto en ondas que viajan hacia delante y hacia atrás por medio de la descomposición de presiones, empleando la componente reflejada y transmitida para verificar la bondad del modelo. El trabajo experimental de esta tesis se centra en desarrollar un nuevo método para ensayar cualquier turbina de doble entrada sometida a condiciones de flujo fuertemente pulsante. La configuración del banco de gas se ha diseñado para ser suficientemente flexible como para realizar pulsos en las dos ramas de entrada por separado, así como para usar condiciones de flujo caliente o condiciones ambiente con mínimos cambios en la instalación. La campaña experimental se usa para validar un modelo integrado unidimensional de turbina tipo twin scroll con especial foco en las componentes reflejada y transmitida para analizar el desempeño del modelo su capacidad de predicción de la acústica no lineal. Finalmente, después de desarrollar el trabajo experimental y de modelado, se presenta un procedimiento para caracterizar el sonido y ruido de la turbina por medio de matrices de transferencia acústica que es comparado con el código unidimensional completo. En este sentido, el método proporciona una herramienta útil y fácil de implementar para simulaciones en tiempo real que aplica de una manera práctica el trabajo de modelado expuesto a lo largo de esta tesis.[CA] Està fora de tot dubte que la indústria de l'automòbil està vivint una profunda transformació que, durant els últims anys, ha progressat a un ritme accelerat. A causa de la creixentment estricta regulació sobre emissions contaminants i la necessitat de satisfer la sempre creixent demanda de mobilitat sostenible, és necessari que els motors de combustió moderns reduïsquen el seu consum i emissions mantenint el rendiment del motor. Per a enfrontar-se a aquest desafiament, els enginyers de recerca i desenvolupament han redoblat els seus esforços a l'hora de dissenyar i millorar els models unidimensionals, fins al punt en el qual el desenvolupament de models 1D així com la simulació juguen un paper fonamental en les primeres etapes de disseny de nous motors i tecnologies. Al mateix temps, la tecnologia de turbosobrealimentación s'ha consolidat com una de les més efectives a l'hora de construir motors d'alta eficiència, la qual cosa ha fet evident la importància de comprendre i modelar correctament els efectes associats als turbogrupos. Particularment, els fenòmens que ocorren en la turbina en condicions de flux fortament polsant han demostrat ser complicades de modelar i no obstant això decisives, ja que els codis de simulació són especialment útils quan són dissenyats per a treballar en condicions realistes. Aquest treball se centra en millorar els models unidimensionals actuals així com a desenvolupar noves solucions amb l'objectiu de contribuir a una millor predicció del comportament de la turbina sotmesa a condicions de flux polsant. Tant els esforços realitzats en els treballs experimentals com en els de modelatge s'han produït per a poder proporcionar mètodes que siguen fàcils d'adaptar a les diferents configuracions de turbogrupo usades en l'indústria, per això, poden ser aplicats per exemple en turbines d'entrada simple i també en les cada vegada més usades turbines d'entrada doble. Pel que fa al treball de modelatge en la part de turbina d'entrada simple, el focus s'ha posat a presentar una versió millorada d'un codi quasi-2D. La validació del model es basa en les dades experimentals que estan disponibles de treballs anteriors de la literatura, proporcionant una comparació completa entre els models quasi-2D i el clàssic model 1D. La pressió a l'entrada i eixida de la turbina s'ha descompost en ones que viatgen cap avant i cap enrere per mitjà de la descomposició de pressions, emprant la component reflectida i transmesa per a verificar la bondat del model. El treball experimental d'aquesta tesi se centra en desenvolupar un nou mètode per a assajar qualsevol turbina de doble entrada sotmesa a condicions de flux fortament pulsante. La configuració del banc de gas s'ha dissenyat per a ser prou flexible com per a realitzar polsos en les dues branques d'entrada per separat, així com per a usar condicions de flux calent o condicions ambient amb mínims canvis en la instal·lació. La campanya experimental s'usa per a validar un model integrat unidimensional de turbina tipus twin-scroll amb especial focus en les components reflectida i transmesa per a analitzar l'acompliment del model la seua capacitat de predicció de l'acústica no lineal. Finalment, després de desenvolupar el treball experimental i de modelatge, es presenta un procediment per a caracteritzar el so i soroll de la turbina per mitjà de matrius de transferència acústica que és comparat amb el codi unidimensional complet. En aquest sentit, el mètode proporciona una eina útil i fàcil d'implementar per a simulacions en temps real que aplica d'una manera pràctica el treball de modelatge exposat al llarg d'aquesta tesi.[EN] It is beyond all doubt that the automotive industry is living a deep transformation that, during the last years, has progressed at an ever accelerating rate. Due to the increasingly stringent pollutant emission regulations and the necessity to fulfil an ever growing demand for sustainable mobility, the modern internal combustion engines are required to strongly reduce the fuel consumption and emissions, while keeping the engine performance. In order to confront this challenge, engine research and development engineers have redoubled their efforts in designing and improving one-dimensional codes, to the point that the development of 1D models and simulation campaigns play a major role in the early steps of designing new engines or technologies. At the same time as the turbocharging technology has arisen as one of the most effective and extended solutions for building high efficient engines, the importance of understanding and modelling correctly the turbocharger effects has become evident. In particular, the phenomena that occurs in the turbine under highly pulsating conditions have proven to be challenging to model and yet decisive, as simulation codes are especially useful when they are designed to work under realistic conditions. This work focusses on the improvement of current one-dimensional models as well as in the development of new solutions with the aim of contributing to a better prediction of the turbine performance under pulsating conditions. Both experimental and modelling efforts have been made in order to provide methods that are easily adaptable to different turbocharger configurations used in the industry, so they can be applied for example in single turbines and also in the increasingly used two-scroll turbine technology. Regarding the modelling work of the single entry turbine part, the work has been focused in presenting an improved version of a quasi-2D code. The validation of the model is based on the experimental data available from previous works of the literature, providing a complete comparison between the quasi-2D and a classic 1D model. By means of a pressure decomposition, the pressure at the turbine inlet and outlet has been split into forward and backward travelling waves, employing the reflected and transmitted components to verify the goodness of the model. The experimental work of the thesis is centred in developing a new method in order to test any two-scroll turbine under highly pulsating flow conditions. The gas stand setup has been designed to be flexible enough to perform pulses in both inlet branches separately as well as to use hot or ambient conditions with minimal changes in the installation. The experimental campaign is used to fully validate an integrated 1D twin-scroll turbine model with special focus in the reflected and transmitted components for analysing the performance of the model and its non-linear acoustics prediction capabilities. Finally, after the experiment and modelling work is developed, a procedure to characterise the turbine sound and noise by means of acoustic transfer matrices is presented and tested against the fully one-dimensional code. In this sense, this method provides a useful and easily-implementable tool for fast and real time simulations that applies in a practical way the modelling work exposed along this thesis.Soler Blanco, P. (2020). Simulation and modelling of the performance of radial turbochargers under unsteady flow [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/141609TESI

    Optimal dynamic calibration methods for powertrain controllers

    Get PDF
    Emission legislation for passenger cars has become more stringent and the increasing demand for reduced fuel consumption has resulted in the introduction of complex new engine and after-treatment technologies involving significantly more control parameters. Vehicle manufacturers employ a time consuming engine parameter calibration process to optimise vehicle performance through the development of engine management system control maps. The traditional static calibration methods require an exponential increase in calibration time with additional calibration parameters and control objectives. To address this issue, this thesis develops and investigates a novel Inverse Optimal Behaviour Based Dynamic Calibration methodology and its application to diesel engines. This multi-stage methodology is based on dynamic black-box modelling and dynamic system optimisation. Firstly the engine behaviour is characterized by black-box models, based on data obtained in a rapid data collection process, for accurate dynamic representation of a subject engine. Then constrained dynamic optimisation is employed to find the optimal input-output behaviour. Finally the optimal input-output behaviour is used to identify feedforward dynamic controllers. The current study applies the methodology to an industrial state-of-the-art WAVERT model of a 1.5 litre Turbo EU6.1 Diesel engine acting as a virtual engine. The approach directly yields a feedforward controller in a nonlinear polynomial structure which can either be directly implemented in the engine-management system or converted to a dynamic or static look-up table format. The results indicate that the methodology is superior to the conventional static calibration approach in both computing efficiency and control performance. A low-cost Transient Testing Platform is presented in this work to carry out transient data collection experiments on a steady-state dynamometer with application to non-linear engine and emissions modelling using State Space Neural Networks. This modelling technique is shown to be superior to the polynomial models and achieves similar performance to non-linear autoregressive with exogenous input neural (NARMAX) network models. Numerical Dynamic Programming is investigated in a simplified engine calibration problem for a virtual engine to potentially improve the dynamic calibration optimisation stage. In a second study the novel dynamic calibration methodology is applied to the airpath control of a 3.0L Jaguar Land Rover (JLR) turbocharged Diesel engine utilizing a direct optimisation approach and State Space Neural Network models. A complete experimental application of the methodology is demonstrated in a vehicle where the vehicle-implemented calibration is obtained in a one-shot process solely from data obtained from the fast dynamic dynamometer testing. The results obtained demonstrate the potential of this methodology for the rapid development of efficient dynamic feedforward controllers based on limited data from the engine test bed
    corecore