1,892 research outputs found

    Towards a Characterisation of Assets and Knowledge Created in Technological Agreements Some Evidence from the Automobile-Robotics Sector

    Get PDF
    This paper tries to bring new insights on the dynamics of inter-firm by focusing on cognitive and organisational dimensions. We consider the knowledge bases created inside the agreement and the characteristics of such knowledge bases (such as tacitness, level of generality, degree of centralisation...). The nature of assets for supporting this creation is also essential for the redeployability of knowledge created. We began by a brief review of some problems encountered by transactions cost economics and present some case studies of agreements between firms in the automobile and robotics sector. After having presented a taxonomy of knowledge and assets involved in such agreements, we bring some new discussion on the exploration/exploitation's dilemma. We argue finally that our taxonomy may be fruitful for a better understanding of the dynamic of firm boudaries by trying to go deeper into the "black box" of agreements.Inter-firm relations, automobile industry, technological agreements

    I Can See Your Aim: Estimating User Attention From Gaze For Handheld Robot Collaboration

    Get PDF
    This paper explores the estimation of user attention in the setting of a cooperative handheld robot: a robot designed to behave as a handheld tool but that has levels of task knowledge. We use a tool-mounted gaze tracking system, which, after modelling via a pilot study, we use as a proxy for estimating the attention of the user. This information is then used for cooperation with users in a task of selecting and engaging with objects on a dynamic screen. Via a video game setup, we test various degrees of robot autonomy from fully autonomous, where the robot knows what it has to do and acts, to no autonomy where the user is in full control of the task. Our results measure performance and subjective metrics and show how the attention model benefits the interaction and preference of users.Comment: this is a corrected version of the one that was published at IROS 201

    Measuring progress in robotics: Benchmarking and the ‘measure-target confusion’

    Get PDF
    While it is often said that robotics should aspire to reproducible and measurable results that allow benchmarking, I argue that a focus on benchmarking can be a hindrance for progress in robotics. The reason is what I call the ‘measure-target confusion’, the confusion between a measure of progress and the target of progress. Progress on a benchmark (the measure) is not identical to scientific or technological progress (the target). In the past, several academic disciplines have been led into pursuing only reproducible and measurable ‘scientific’ results – robotics should be careful to follow that line because results that can be benchmarked must be specific and context-dependent, but robotics targets whole complex systems for a broad variety of contexts. While it is extremely valuable to improve benchmarks to reduce the distance be- tween measure and target, the general problem to measure progress towards more intelligent machines (the target) will not be solved by benchmarks alone; we need a balanced approach with sophisticated benchmarks, plus real-life testing, plus qualitative judgment

    Externalising moods and psychological states in a cloud based system to enhance a pet-robot and child’s interaction

    Get PDF
    Background:This PATRICIA research project is about using pet robots to reduce pain and anxiety in hospitalized children. The study began 2 years ago and it is believed that the advances made in this project are significant. Patients, parents, nurses, psycholo- gists, and engineers have adopted the Pleo robot, a baby dinosaur robotic pet, which works in different ways to assist children during hospitalization. Methods: Focus is spent on creating a wireless communication system with the Pleo in order to help the coordinator, who conducts therapy with the child, monitor, under- stand, and control Pleo’s behavior at any moment. This article reports how this techno- logical function is being developed and tested. Results: Wireless communication between the Pleo and an Android device is achieved. The developed Android app allows the user to obtain any state of the robot without stopping its interaction with the patient. Moreover, information is sent to a cloud, so that robot moods, states and interactions can be shared among different robots. Conclusions: Pleo attachment was successful for more than 1 month, working with children in therapy, which makes the investment capable of positive therapeutic possibilities. This technical improvement in the Pleo addresses two key issues in social robotics: needing an enhanced response to maintain the attention and engagement of the child, and using the system as a platform to collect the states of the child’s progress for clinical purposes.Peer ReviewedPostprint (published version

    Towards Intelligent Telerobotics: Visualization and Control of Remote Robot

    Get PDF
    Human-machine cooperative or co-robotics has been recognized as the next generation of robotics. In contrast to current systems that use limited-reasoning strategies or address problems in narrow contexts, new co-robot systems will be characterized by their flexibility, resourcefulness, varied modeling or reasoning approaches, and use of real-world data in real time, demonstrating a level of intelligence and adaptability seen in humans and animals. The research I focused is in the two sub-field of co-robotics: teleoperation and telepresence. We firstly explore the ways of teleoperation using mixed reality techniques. I proposed a new type of display: hybrid-reality display (HRD) system, which utilizes commodity projection device to project captured video frame onto 3D replica of the actual target surface. It provides a direct alignment between the frame of reference for the human subject and that of the displayed image. The advantage of this approach lies in the fact that no wearing device needed for the users, providing minimal intrusiveness and accommodating users eyes during focusing. The field-of-view is also significantly increased. From a user-centered design standpoint, the HRD is motivated by teleoperation accidents, incidents, and user research in military reconnaissance etc. Teleoperation in these environments is compromised by the Keyhole Effect, which results from the limited field of view of reference. The technique contribution of the proposed HRD system is the multi-system calibration which mainly involves motion sensor, projector, cameras and robotic arm. Due to the purpose of the system, the accuracy of calibration should also be restricted within millimeter level. The followed up research of HRD is focused on high accuracy 3D reconstruction of the replica via commodity devices for better alignment of video frame. Conventional 3D scanner lacks either depth resolution or be very expensive. We proposed a structured light scanning based 3D sensing system with accuracy within 1 millimeter while robust to global illumination and surface reflection. Extensive user study prove the performance of our proposed algorithm. In order to compensate the unsynchronization between the local station and remote station due to latency introduced during data sensing and communication, 1-step-ahead predictive control algorithm is presented. The latency between human control and robot movement can be formulated as a linear equation group with a smooth coefficient ranging from 0 to 1. This predictive control algorithm can be further formulated by optimizing a cost function. We then explore the aspect of telepresence. Many hardware designs have been developed to allow a camera to be placed optically directly behind the screen. The purpose of such setups is to enable two-way video teleconferencing that maintains eye-contact. However, the image from the see-through camera usually exhibits a number of imaging artifacts such as low signal to noise ratio, incorrect color balance, and lost of details. Thus we develop a novel image enhancement framework that utilizes an auxiliary color+depth camera that is mounted on the side of the screen. By fusing the information from both cameras, we are able to significantly improve the quality of the see-through image. Experimental results have demonstrated that our fusion method compares favorably against traditional image enhancement/warping methods that uses only a single image

    Recent Advancements in Augmented Reality for Robotic Applications: A Survey

    Get PDF
    Robots are expanding from industrial applications to daily life, in areas such as medical robotics, rehabilitative robotics, social robotics, and mobile/aerial robotics systems. In recent years, augmented reality (AR) has been integrated into many robotic applications, including medical, industrial, human–robot interactions, and collaboration scenarios. In this work, AR for both medical and industrial robot applications is reviewed and summarized. For medical robot applications, we investigated the integration of AR in (1) preoperative and surgical task planning; (2) image-guided robotic surgery; (3) surgical training and simulation; and (4) telesurgery. AR for industrial scenarios is reviewed in (1) human–robot interactions and collaborations; (2) path planning and task allocation; (3) training and simulation; and (4) teleoperation control/assistance. In addition, the limitations and challenges are discussed. Overall, this article serves as a valuable resource for working in the field of AR and robotic research, offering insights into the recent state of the art and prospects for improvement
    • 

    corecore