2,074 research outputs found

    A petri nets based design of cognitive radios using distributed signal processing

    Get PDF
    AbstractReconfigurability for transceivers for wireless access networks like Bluetooth, WiMAX and W-LAN will become increasingly important. An appropriately flexible and reliable software architecture, allowing the concurrent processing of different controlling tasks for wireless terminals will hence be an important asset. Already during the 1980s reconfigurable receivers were developed for radio intelligence in the short wave range and the concept of software radio (SR) was born. A software defined radio (SDR) is a practical version of an SR: The received signals are sampled after a suitable band selection filter, usually in the base band or a low intermediate frequency band. The signal processing in both SR and SDR requires a considerable amount of concurrent processes. Since Petri nets (PNs) are both simple and strong tools for the description and the design of such concurrent processes, it is recommendable to deploy them for SDR. SDRs have paved the way towards cognitive radios (CRs), which are based on SDRs that additionally sense their environments, track changes, and react upon their findings. A CR is an autonomous unit in a communications environment that frequently exchanges information with the networks it is able to access as well as with other CRs. In this communication, the authors will introduce a realization concept for a CR which forms the basis of a hardware/firmware demonstrator developed by the authors. This demonstrator makes use of a digital signal processor (DSP) which forms the core of the design and flexibly programmable hardware accelerators based on field programmable gate arrays (FPGAs). The authors will describe the solution also in view of the recent developments of IEEE 802.2

    Appliance design for pervasive computing

    Get PDF
    The First International Conference on Appliance Design offered the opportunity for computer scientists, electronic engineers, designers, architects, and business strategists to discuss and to blend all the perspectives of design—physical, functional, interaction, graphical, and information—of pervasive computing systems and infrastructures

    HetHetNets: Heterogeneous Traffic Distribution in Heterogeneous Wireless Cellular Networks

    Full text link
    A recent approach in modeling and analysis of the supply and demand in heterogeneous wireless cellular networks has been the use of two independent Poisson point processes (PPPs) for the locations of base stations (BSs) and user equipments (UEs). This popular approach has two major shortcomings. First, although the PPP model may be a fitting one for the BS locations, it is less adequate for the UE locations mainly due to the fact that the model is not adjustable (tunable) to represent the severity of the heterogeneity (non-uniformity) in the UE locations. Besides, the independence assumption between the two PPPs does not capture the often-observed correlation between the UE and BS locations. This paper presents a novel heterogeneous spatial traffic modeling which allows statistical adjustment. Simple and non-parameterized, yet sufficiently accurate, measures for capturing the traffic characteristics in space are introduced. Only two statistical parameters related to the UE distribution, namely, the coefficient of variation (the normalized second-moment), of an appropriately defined inter-UE distance measure, and correlation coefficient (the normalized cross-moment) between UE and BS locations, are adjusted to control the degree of heterogeneity and the bias towards the BS locations, respectively. This model is used in heterogeneous wireless cellular networks (HetNets) to demonstrate the impact of heterogeneous and BS-correlated traffic on the network performance. This network is called HetHetNet since it has two types of heterogeneity: heterogeneity in the infrastructure (supply), and heterogeneity in the spatial traffic distribution (demand).Comment: JSA

    The Dialog DSL : rapid development of advanced web-based dialogs with stakeholders

    Get PDF

    Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff

    Full text link
    Simultaneous information and power transfer over the wireless channels potentially offers great convenience to mobile users. Yet practical receiver designs impose technical constraints on its hardware realization, as practical circuits for harvesting energy from radio signals are not yet able to decode the carried information directly. To make theoretical progress, we propose a general receiver operation, namely, dynamic power splitting (DPS), which splits the received signal with adjustable power ratio for energy harvesting and information decoding, separately. Three special cases of DPS, namely, time switching (TS), static power splitting (SPS) and on-off power splitting (OPS) are investigated. The TS and SPS schemes can be treated as special cases of OPS. Moreover, we propose two types of practical receiver architectures, namely, separated versus integrated information and energy receivers. The integrated receiver integrates the front-end components of the separated receiver, thus achieving a smaller form factor. The rate-energy tradeoff for the two architectures are characterized by a so-called rate-energy (R-E) region. The optimal transmission strategy is derived to achieve different rate-energy tradeoffs. With receiver circuit power consumption taken into account, it is shown that the OPS scheme is optimal for both receivers. For the ideal case when the receiver circuit does not consume power, the SPS scheme is optimal for both receivers. In addition, we study the performance for the two types of receivers under a realistic system setup that employs practical modulation. Our results provide useful insights to the optimal practical receiver design for simultaneous wireless information and power transfer (SWIPT).Comment: to appear in IEEE Transactions on Communication

    Sequential Monte Carlo simulation of collision risk in free flight air traffic

    Get PDF
    Within HYBRIDGE a novel approach in speeding up Monte Carlo simulation of rare events has been developed. In the current report this method is extended for application to simulating collisions with a stochastic dynamical model of an air traffic operational concept. Subsequently this extended Monte Carlo simulation approach is applied to a simulation model of an advanced free flight operational concept; i.e. one in which aircraft are responsible for self separation with each other. The Monte Carlo simulation results obtained for this advanced concept show that the novel method works well, and that it allows studying rare events that stayed invisible in previous Monte Carlo simulations of advanced air traffic operational concepts
    corecore