131 research outputs found

    Spectrum Utilization of Cognitive Radio in Industrial Wireless Sensor Networks - A Review

    Get PDF
    The increasing demand for intelligent control and automation in industry requires better use of the radio spectrum due to the use of industrial wireless sensor networks (IWSNs). Cognitive Radio (CR) is a promising technology to improve the spectrum utilization by sensing spectrum holes. Research in this area is still in its infancy, but it is progressing rapidly. In this paper, industrial environment with different wireless technology, such as WirelessHART and ISA 100.11a is investigated. Various sensing schemes and the challenges associated for the cognitive radio are reviewed. In addition, the paper discussed the methods relevant to industrial applications, covering architecture, spectrum access, interference management, spectrum sensing and spectrum sharing

    An Adaptive Broadcasting Strategy for Efficient Dynamic Mapping in Vehicular Networks

    Get PDF
    In this work, we face the issue of achieving an efficient dynamic mapping in vehicular networking scenarios, i.e., obtaining an accurate estimate of the positions and trajectories of connected vehicles in a certain area. State-of-the-art solutions are based on the periodic broadcasting of the position information of the network nodes, with an inter-transmission period set by a congestion control scheme. However, the movements and maneuvers of vehicles can often be erratic, making transmitted data inaccurate or downright misleading. To address this problem, we propose to adopt a dynamic transmission scheme based on the actual positioning error, sending new data when the estimate overcomes a preset error threshold. Furthermore, the proposed method adapts the error threshold to the operational context according to an innovative congestion control algorithm that limits the collision probability among broadcast packet transmissions. This threshold-based strategy can reduce the network load by avoiding the transmission of redundant messages, and is shown to improve the overall positioning accuracy by more than 20% in realistic urban scenarios

    An overview on structural health monitoring: From the current state-of-the-art to new bio-inspired sensing paradigms

    Get PDF
    In the last decades, the field of structural health monitoring (SHM) has grown exponentially. Yet, several technical constraints persist, which are preventing full realization of its potential. To upgrade current state-of-the-art technologies, researchers have started to look at nature’s creations giving rise to a new field called ‘biomimetics’, which operates across the border between living and non-living systems. The highly optimised and time-tested performance of biological assemblies keeps on inspiring the development of bio-inspired artificial counterparts that can potentially outperform conventional systems. After a critical appraisal on the current status of SHM, this paper presents a review of selected works related to neural, cochlea and immune-inspired algorithms implemented in the field of SHM, including a brief survey of the advancements of bio-inspired sensor technology for the purpose of SHM. In parallel to this engineering progress, a more in-depth understanding of the most suitable biological patterns to be transferred into multimodal SHM systems is fundamental to foster new scientific breakthroughs. Hence, grounded in the dissection of three selected human biological systems, a framework for new bio-inspired sensing paradigms aimed at guiding the identification of tailored attributes to transplant from nature to SHM is outlined.info:eu-repo/semantics/acceptedVersio

    Novel Internet of Vehicles Approaches for Smart Cities

    Get PDF
    Smart cities are the domain where many electronic devices and sensors transmit data via the Internet of Vehicles concept. The purpose of deploying many sensors in cities is to provide an intelligent environment and a good quality of life. However, different challenges still appear in smart cities such as vehicular traffic congestion, air pollution, and wireless channel communication aspects. Therefore, in order to address these challenges, this thesis develops approaches for vehicular routing, wireless channel congestion alleviation, and traffic estimation. A new traffic congestion avoidance approach has been developed in this thesis based on the simulated annealing and TOPSIS cost function. This approach utilizes data such as the traffic average travel speed from the Internet of Vehicles. Simulation results show that the developed approach improves the traffic performance for the Sheffield the scenario in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO2 emissions as compared to other algorithms. In contrast, transmitting a large amount of data among the sensors leads to a wireless channel congestion problem. This affects the accuracy of transmitted information due to the packets loss and delays time. This thesis proposes two approaches based on a non-cooperative game theory to alleviate the channel congestion problem. Therefore, the congestion control problem is formulated as a non-cooperative game. A proof of the existence of a unique Nash equilibrium is given. The performance of the proposed approaches is evaluated on the highway and urban testing scenarios. This thesis also addresses the problem of missing data when sensors are not available or when the Internet of Vehicles connection fails to provide measurements in smart cities. Two approaches based on l1 norm minimization and a relevance vector machine type optimization are proposed. The performance of the developed approaches has been tested involving simulated and real data scenarios

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    The Internet of Things: A Review of Enabled Technologies and Future Challenges

    Get PDF
    The Internet of Things (IoT) is an emerging classical model, envisioned as a system of billions of small interconnected devices for posing the state-of-the-art findings to real-world glitches. Over the last decade, there has been an increasing research concentration in the IoT as an essential design of the constant convergence between human behaviors and their images on Information Technology. With the development of technologies, the IoT drives the deployment of across-the-board and self-organizing wireless networks. The IoT model is progressing toward the notion of a cyber-physical world, where things can be originated, driven, intermixed, and modernized to facilitate the emergence of any feasible association. This paper provides a summary of the existing IoT research that underlines enabling technologies, such as fog computing, wireless sensor networks, data mining, context awareness, real-time analytics, virtual reality, and cellular communications. Also, we present the lessons learned after acquiring a thorough representation of the subject. Thus, by identifying numerous open research challenges, it is presumed to drag more consideration into this novel paradigm. 2013 IEEE.This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government(MSIT) (No. 2018-0-01411, A Micro-Service IoTWare Framework Technology Development for Ultra small IoT Device).Scopus2-s2.0-8505888625
    • …
    corecore