379 research outputs found

    Advanced Quantizer Designs for FDD-Based FD-MIMO Systems Using Uniform Planar Arrays

    Full text link
    Massive multiple-input multiple-output (MIMO) systems, which utilize a large number of antennas at the base station, are expected to enhance network throughput by enabling improved multiuser MIMO techniques. To deploy many antennas in reasonable form factors, base stations are expected to employ antenna arrays in both horizontal and vertical dimensions, which is known as full-dimension (FD) MIMO. The most popular two-dimensional array is the uniform planar array (UPA), where antennas are placed in a grid pattern. To exploit the full benefit of massive MIMO in frequency division duplexing (FDD), the downlink channel state information (CSI) should be estimated, quantized, and fed back from the receiver to the transmitter. However, it is difficult to accurately quantize the channel in a computationally efficient manner due to the high dimensionality of the massive MIMO channel. In this paper, we develop both narrowband and wideband CSI quantizers for FD-MIMO taking the properties of realistic channels and the UPA into consideration. To improve quantization quality, we focus on not only quantizing dominant radio paths in the channel, but also combining the quantized beams. We also develop a hierarchical beam search approach, which scans both vertical and horizontal domains jointly with moderate computational complexity. Numerical simulations verify that the performance of the proposed quantizers is better than that of previous CSI quantization techniques.Comment: 15 pages, 6 figure

    On the Number of RF Chains and Phase Shifters, and Scheduling Design with Hybrid Analog-Digital Beamforming

    Full text link
    This paper considers hybrid beamforming (HB) for downlink multiuser massive multiple input multiple output (MIMO) systems with frequency selective channels. For this system, first we determine the required number of radio frequency (RF) chains and phase shifters (PSs) such that the proposed HB achieves the same performance as that of the digital beamforming (DB) which utilizes NN (number of transmitter antennas) RF chains. We show that the performance of the DB can be achieved with our HB just by utilizing rtr_t RF chains and 2rt(Nrt+1)2r_t(N-r_t + 1) PSs, where rtNr_t \leq N is the rank of the combined digital precoder matrices of all sub-carriers. Second, we provide a simple and novel approach to reduce the number of PSs with only a negligible performance degradation. Numerical results reveal that only 204020-40 PSs per RF chain are sufficient for practically relevant parameter settings. Finally, for the scenario where the deployed number of RF chains (Na)(N_a) is less than rtr_t, we propose a simple user scheduling algorithm to select the best set of users in each sub-carrier. Simulation results validate theoretical expressions, and demonstrate the superiority of the proposed HB design over the existing HB designs in both flat fading and frequency selective channels.Comment: IEEE Transactions on Wireless Communications (Minor Revision
    corecore