67 research outputs found

    Representing Guardedness in Call-By-Value

    Get PDF
    Like the notion of computation via (strong) monads serves to classify various flavours of impurity, including exceptions, non-determinism, probability, local and global store, the notion of guardedness classifies well-behavedness of cycles in various settings. In its most general form, the guardedness discipline applies to general symmetric monoidal categories and further specializes to Cartesian and co-Cartesian categories, where it governs guarded recursion and guarded iteration respectively. Here, even more specifically, we deal with the semantics of call-by-value guarded iteration. It was shown by Levy, Power and Thielecke that call-by-value languages can be generally interpreted in Freyd categories, but in order to represent effectful function spaces, such a category must canonically arise from a strong monad. We generalize this fact by showing that representing guarded effectful function spaces calls for certain parametrized monads (in the sense of Uustalu). This provides a description of guardedness as an intrinsic categorical property of programs, complementing the existing description of guardedness as a predicate on a category

    Preservation and reflection of bisimilarity via invertible steps

    Get PDF
    In the theory of coalgebras, distributive laws give a general perspective on determinisation and other automata constructions. This perspective has recently been extended to include so-called weak distributive laws, covering several constructions on state-based systems that are not captured by regular distributive laws, such as the construction of a belief-state transformer from a probabilistic automaton, and ultrafilter extensions of Kripke frames. In this paper we first observe that weak distributive laws give rise to the more general notion of what we call an invertible step: a pair of natural transformations that allows to move coalgebras along an adjunction. Our main result is that part of the construction induced by an invertible step preserves and reflects bisimilarity. This covers results that have previously been shown by hand for the instances of ultrafilter extensions and belief-state transformers

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Span(Graph): a Canonical Feedback Algebra of Open Transition Systems

    Full text link
    We show that Span(Graph)*, an algebra for open transition systems introduced by Katis, Sabadini and Walters, satisfies a universal property. By itself, this is a justification of the canonicity of this model of concurrency. However, the universal property is itself of interest, being a formal demonstration of the relationship between feedback and state. Indeed, feedback categories, also originally proposed by Katis, Sabadini and Walters, are a weakening of traced monoidal categories, with various applications in computer science. A state bootstrapping technique, which has appeared in several different contexts, yields free such categories. We show that Span(Graph)* arises in this way, being the free feedback category over Span(Set). Given that the latter can be seen as an algebra of predicates, the algebra of open transition systems thus arises - roughly speaking - as the result of bootstrapping state to that algebra. Finally, we generalize feedback categories endowing state spaces with extra structure: this extends the framework from mere transition systems to automata with initial and final states.Comment: 48 pages, 33 figures, journal versio

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Flexible Coinduction

    Get PDF
    openRecursive definitions of predicates by means of inference rules are ubiquitous in computer science. They are usually interpreted inductively or coinductively, however there are situations where none of these two options provides the expected meaning. In the thesis we propose a flexible form of coinductive interpretation, based on the notion of corules, able to deal with such situations. In the first part, we define such flexible coinductive interpretation as a fixed point of the standard inference operator lying between the least and the greatest one, and we provide several equivalent proof-theoretic semantics, combining well-founded and non-well-founded derivations. This flexible interpretation nicely subsumes standard inductive and coinductive ones and is naturally associated with a proof principle, which smoothly extends the usual coinduction principle. In the second part, we focus on the problem of modelling infinite behaviour by a big-step operational semantics, which is a paradigmatic example where neither induction nor coinduction provide the desired interpretation. In order to be independent from specific examples, we provide a general, but simple, definition of what a big-step semantics is. Then, we extend it to include also observations, describing the interaction with the environment, thus providing a richer description of the behaviour of programs. In both settings, we show how corules can be successfully adopted to model infinite behaviour, by providing a construction extending a big-step semantics, which as usual only describes finite computations, to a richer one including infinite computations as well. Finally, relying on these constructions, we provide a proof technique to show soundness of a predicate with respect to a big-step semantics. In the third part, we ez face eez the problem of providing an algorithmic support to corules. To this end, we consider the restriction of the flexible coinductive interpretation to regular derivations, analysing again both proof-theoretic and fixed point semantics and developing proof techniques. Furthermore, we show that this flexible regular interpretation can be equivalently characterised inductively by a cycle detection mechanism, thus obtaining a sound and complete (abstract) (semi-)algorithm to check whether a judgement is derivable. Finally, we apply such results to extend logic programming by coclauses, the analogous of corules, defining declarative and operational semantics and proving ez that eez the latter is sound and complete with respect to the regular declarative model, thus obtaining a concrete support to flexible coinduction.openXXXIII CICLO - INFORMATICA E INGEGNERIA DEI SISTEMI/ COMPUTER SCIENCE AND SYSTEMS ENGINEERING - Informatica/computer scienceDagnino, Francesc

    Efficient Automata Techniques and Their Applications

    Get PDF
    Tato práce se zabývá vývojem efektivních technik pro konečné automaty a jejich aplikace. Zejména se věnujeme konečným automatům použitých pří detekci útoků v síťovém provozu a automatům v rozhodovacích procedurách a verifikaci. V první části práce navrhujeme techniky přibližné redukce nedeterministických automatů, které snižují spotřebu zdrojů v hardwarově akcelerovaném zkoumání obsahu paketů. Druhá část práce je je věnována automatům v rozhodovacích procedurách, zejména slabé monadické logice druhého řádů k následníků (WSkS) a teorie nad řetězci. Navrhujeme novou rozhodovací proceduru pro WS2S založenou na automatových termech, umožňující efektivně prořezávat stavový prostor. Dále studujeme techniky předzpracování WSkS formulí za účelem snížení velikosti konstruovaných automatů. Automaty jsme také aplikovali v rozhodovací proceduře teorie nad řetězci pro efektivní reprezentaci důkazového stromu. V poslední části práce potom navrhujeme optimalizace rank-based komplementace Buchiho automatů, které snižuje počet generovaných stavů během konstrukce komplementu.This thesis develops efficient techniques for finite automata and their applications. In particular, we focus on finite automata in network intrusion detection and automata in decision procedures and verification. In the first part of the thesis, we propose techniques of approximate reduction of nondeterministic automata decreasing consumption of resources of hardware-accelerated deep packet inspection. The second part is devoted to automata in decision procedures, in particular, to weak monadic second-order logic of k successors (WSkS) and the theory of strings. We propose a novel decision procedure for WS2S based on automata terms allowing one to effectively prune the state space. Further, we study techniques of WSkS formulae preprocessing intended to reduce the sizes of constructed intermediate automata. Moreover, we employ automata in a decision procedure of the theory of strings for efficient handling of the proof graph. The last part of the thesis then proposes optimizations in rank-based Buchi automata complementation reducing the number of generated states during the construction.

    Three Hopf algebras from number theory, physics & topology, and their common background I: operadic & simplicial aspects

    Get PDF
    We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, co-operads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretations of known constructions in a large common framework, which is presented step-by-step with examples throughout. In this first part of two papers, we concentrate on the simplicial and operadic aspects.Comment: This replacement is part I of the final version of the paper, which has been split into two parts. The second part is available from the arXiv under the title "Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation" arXiv:2001.0872

    The Theory of Traces for Systems with Nondeterminism, Probability, and Termination

    Full text link
    This paper studies trace-based equivalences for systems combining nondeterministic and probabilistic choices. We show how trace semantics for such processes can be recovered by instantiating a coalgebraic construction known as the generalised powerset construction. We characterise and compare the resulting semantics to known definitions of trace equivalences appearing in the literature. Most of our results are based on the exciting interplay between monads and their presentations via algebraic theories.Comment: This paper is an extended version of a LICS 2019 paper "The Theory of Traces for Systems with Nondeterminism and Probability". It contains all the proofs, additional explanations, material, and example
    corecore