678 research outputs found

    Security and Privacy in Heterogeneous Wireless and Mobile Networks: Challenges and Solutions

    Get PDF
    abstract: The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.Dissertation/ThesisPh.D. Electrical Engineering 201

    DESIGN OF MOBILE DATA COLLECTOR BASED CLUSTERING ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Networks (WSNs) consisting of hundreds or even thousands of nodes, canbe used for a multitude of applications such as warfare intelligence or to monitor the environment. A typical WSN node has a limited and usually an irreplaceable power source and the efficient use of the available power is of utmost importance to ensure maximum lifetime of eachWSNapplication. Each of the nodes needs to transmit and communicate sensed data to an aggregation point for use by higher layer systems. Data and message transmission among nodes collectively consume the largest amount of energy available in WSNs. The network routing protocols ensure that every message reaches thedestination and has a direct impact on the amount of transmissions to deliver messages successfully. To this end, the transmission protocol within the WSNs should be scalable, adaptable and optimized to consume the least possible amount of energy to suite different network architectures and application domains. The inclusion of mobile nodes in the WSNs deployment proves to be detrimental to protocol performance in terms of nodes energy efficiency and reliable message delivery. This thesis which proposes a novel Mobile Data Collector based clustering routing protocol for WSNs is designed that combines cluster based hierarchical architecture and utilizes three-tier multi-hop routing strategy between cluster heads to base station by the help of Mobile Data Collector (MDC) for inter-cluster communication. In addition, a Mobile Data Collector based routing protocol is compared with Low Energy Adaptive Clustering Hierarchy and A Novel Application Specific Network Protocol for Wireless Sensor Networks routing protocol. The protocol is designed with the following in mind: minimize the energy consumption of sensor nodes, resolve communication holes issues, maintain data reliability, finally reach tradeoff between energy efficiency and latency in terms of End-to-End, and channel access delays. Simulation results have shown that the Mobile Data Collector based clustering routing protocol for WSNs could be easily implemented in environmental applications where energy efficiency of sensor nodes, network lifetime and data reliability are major concerns

    Securing Ad Hoc Wireless Sensor Networks under Byzantine Attacks by Implementing Non-Cryptographic Methods

    Get PDF
    Ad Hoc wireless sensor network (WSN) is a collection of nodes that do not need to rely on predefined infrastructure to keep the network connected. The level of security and performance are always somehow related to each other, therefore due to limited resources in WSN, cryptographic methods for securing the network against attacks is not feasible. Byzantine attacks disrupt the communication between nodes in the network without regard to its own resource consumption. This paper discusses the performance of cluster based WSN comparing LEACH with Advanced node based clusters under byzantine attacks. This paper also proposes an algorithm for detection and isolation of the compromised nodes to mitigate the attacks by non-cryptographic means. The throughput increases after using the algorithm for isolation of the malicious nodes, 33% in case of Gray Hole attack and 62% in case of Black Hole attack

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    Aggregate Farming in the Cloud: The AFarCloud ECSEL project

    Get PDF
    Farming is facing many economic challenges in terms of productivity and cost-effectiveness. Labor shortage partly due to depopulation of rural areas, especially in Europe, is another challenge. Domain specific problems such as accurate monitoring of soil and crop properties and animal health are key factors for minimizing economical risks, and not risking human health. The ECSEL AFarCloud (Aggregate Farming in the Cloud) project will provide a distributed platform for autonomous farming that will allow the integration and cooperation of agriculture Cyber Physical Systems in real-time in order to increase efficiency, productivity, animal health, food quality and reduce farm labor costs. Moreover, such a platform can be integrated with farm management software to support monitoring and decision-making solutions based on big data and real-time data mining techniques.publishedVersio

    Secure Data Aggregation Protocol with Byzantine Robustness for Wireless Sensor Networks

    Get PDF
    Sensor networks are dense wireless networks constituting of small and low-cost sensors that collect and disseminate sensory data. They have gained great attention in recent years due to their ability to offer economical and effective solutions in a variety of fields; and their profound suitability to address mission critical problems that are common in health, transportation, and military applications. “Sensor networks” is a technology that is seen to change the world, and as such their deployment is expected to see a rapid growth. Effective security strategy is essential for any sensor network in order to maintain trustful and reliable functionality, protect sensory information, and ensure network component authenticity. Security models and protocols that are typically used in other types of networks, such as wired networks, are not suitable for sensor networks due to their specific hardware specifications. This thesis highlights some of the research done so far in the area of security of wireless sensor networks and proposes a solution to detect Byzantine behaviour - a challenging security threat that many sensor networks face. The proposed solution’s use of cryptography is kept at a minimum to ensure maximum secure bandwidth. Under this solution, a sensor network continues to work normally until an attack is suspected. Once an attack is suspected, a cryptography scheme is enabled to authenticate suspected nodes and to allow the identification of potential external attacks. If an attack seems to persist after the cryptography scheme has been enabled, the same mechanism is used to identify and isolate potentially compromised nodes. The goal is to introduce a degree of intelligence into such networks and consequently improve reliability of data collection, accuracy of aggregated data, and prolong network lifetime

    DESIGN OF MOBILE DATA COLLECTOR BASED CLUSTERING ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Networks (WSNs) consisting of hundreds or even thousands of nodes, canbe used for a multitude of applications such as warfare intelligence or to monitor the environment. A typical WSN node has a limited and usually an irreplaceable power source and the efficient use of the available power is of utmost importance to ensure maximum lifetime of eachWSNapplication. Each of the nodes needs to transmit and communicate sensed data to an aggregation point for use by higher layer systems. Data and message transmission among nodes collectively consume the largest amount of energy available in WSNs. The network routing protocols ensure that every message reaches thedestination and has a direct impact on the amount of transmissions to deliver messages successfully. To this end, the transmission protocol within the WSNs should be scalable, adaptable and optimized to consume the least possible amount of energy to suite different network architectures and application domains. The inclusion of mobile nodes in the WSNs deployment proves to be detrimental to protocol performance in terms of nodes energy efficiency and reliable message delivery. This thesis which proposes a novel Mobile Data Collector based clustering routing protocol for WSNs is designed that combines cluster based hierarchical architecture and utilizes three-tier multi-hop routing strategy between cluster heads to base station by the help of Mobile Data Collector (MDC) for inter-cluster communication. In addition, a Mobile Data Collector based routing protocol is compared with Low Energy Adaptive Clustering Hierarchy and A Novel Application Specific Network Protocol for Wireless Sensor Networks routing protocol. The protocol is designed with the following in mind: minimize the energy consumption of sensor nodes, resolve communication holes issues, maintain data reliability, finally reach tradeoff between energy efficiency and latency in terms of End-to-End, and channel access delays. Simulation results have shown that the Mobile Data Collector based clustering routing protocol for WSNs could be easily implemented in environmental applications where energy efficiency of sensor nodes, network lifetime and data reliability are major concerns

    Resource Management in Green Wireless Communication Networks

    Get PDF
    The development of wireless technologies has been stimulated by the ever increasing network capacity and the diversity of users' quality of service (QoS) requirements. It is widely anticipated that next-generation wireless networks should be capable of integrating wireless networks with various network architectures and wireless access technologies to provide diverse high-quality ubiquitous wireless accesses for users. However, the existing wireless network architecture may not be able to satisfy explosive wireless access request. Moreover, with the increasing awareness of environmental protection, significant growth of energy consumption caused by the massive traffic demand consequently raises the carbon emission footprint. The emerging of green energy technologies, e.g., solar panel and wind turbine, has provided a promising methodology to sustain operations and management of next-generation wireless networks by powering wireless network devices with eco-friendly green energy. In this thesis, we propose a sustainable wireless network solution as the prototype of next-generation wireless networks to fulfill various QoS requirements of users with harvested energy from natural environments. The sustainable wireless solution aims at establishing multi-tier heterogeneous green wireless communication networks to integrate different wireless services and utilizing green energy supplies to sustain the network operations and management. The solution consists of three steps, 1) establishing conventional green wireless networks, 2) building multi-tier green wireless networks, and 3) allocating and balancing network resources. In the first step, we focus on cost-effectively establishing single-tier green wireless networks to satisfy users' basic QoS requirements by designing efficient network planning algorithm. We formulate the minimum green macro cell BS deployment problem as an optimization problem, which aims at placing the minimum number of BSs to fulfill the basic QoS requirements by harvested energy. A preference level is defined as the guidance for efficient algorithm design to solve the minimum green macro cell BSs deployment problem. After that, we propose a heuristic algorithm, called two-phase constrained green BS placement (TCGBP) algorithm, based on Voronoi diagram. The TCGBP algorithm jointly considers the rate adaptation and power allocation to solve the formulated optimization problem. The performance is verified by extensive simulations, which demonstrate that the TCGBP algorithm can achieve the optimal solution with significantly reduced time complexity. In the second step, we aim at efficiently constructing multi-tier green heterogeneous networks to fulfill high-end QoS requirements of users by placing green small cell BSs. We formulate the green small cell BS deployment and sub-carrier allocation problem as a mixed-integer non-linear programming (MINLP) problem, which targets at deploying the minimum number of green small cell BSs as relay nodes to further improve network capacities and provide high-quality QoS wireless services with harvested energy under the cost constraint. We propose the sub-carrier and traffic over rate (STR) metric to evaluate the contribution of deployed green small cell BSs in both energy and throughput aspects. Based on the metric, two algorithms are designed, namely joint relay node placement and sub-carrier allocation with top-down/bottom-up (RNP-SA-t/b) algorithms. Extensive simulations demonstrate that the proposed algorithms provide simple yet efficient solutions and offer important guidelines on network planning and resource management in two-tier heterogeneous green wireless networks. In the last step, we intend to allocate limited network resources to guarantee the balance of charging and discharging processes. Different from network planning based on statistical historical data, the design of resource allocation algorithm generally concerns relatively short-term resources management, and thus it is essential to accurately estimate the instantaneous energy charging and discharging rates of green wireless network devices. Specifically, we investigate the energy trading issues in green wireless networks, and try to maximize the profits of all cells by determining the optimal price and quantity in each energy trading transaction. Finally, we apply a two-stage leader-follower Stackelberg game to formulate the energy trading problem. By using back induction to obtain the optimal price and quantity of traded energy, we propose an optimal algorithm, called optimal profits energy trading (OPET) algorithm. Our analysis and simulation results demonstrate the optimality performance of OPET algorithm. We believe that our research results in this dissertation can provide insightful guidance in the design of next-generation wireless communication networks with green energy. The algorithms developed in the dissertation offer practical and efficient solutions to build and optimize multi-tier heterogeneous green wireless communication networks
    • …
    corecore