2,005 research outputs found

    Unsupervised, Knowledge-Free, and Interpretable Word Sense Disambiguation

    Get PDF
    Interpretability of a predictive model is a powerful feature that gains the trust of users in the correctness of the predictions. In word sense disambiguation (WSD), knowledge-based systems tend to be much more interpretable than knowledge-free counterparts as they rely on the wealth of manually-encoded elements representing word senses, such as hypernyms, usage examples, and images. We present a WSD system that bridges the gap between these two so far disconnected groups of methods. Namely, our system, providing access to several state-of-the-art WSD models, aims to be interpretable as a knowledge-based system while it remains completely unsupervised and knowledge-free. The presented tool features a Web interface for all-word disambiguation of texts that makes the sense predictions human readable by providing interpretable word sense inventories, sense representations, and disambiguation results. We provide a public API, enabling seamless integration.Comment: In Proceedings of the the Conference on Empirical Methods on Natural Language Processing (EMNLP 2017). 2017. Copenhagen, Denmark. Association for Computational Linguistic

    MUSE: Modularizing Unsupervised Sense Embeddings

    Full text link
    This paper proposes to address the word sense ambiguity issue in an unsupervised manner, where word sense representations are learned along a word sense selection mechanism given contexts. Prior work focused on designing a single model to deliver both mechanisms, and thus suffered from either coarse-grained representation learning or inefficient sense selection. The proposed modular approach, MUSE, implements flexible modules to optimize distinct mechanisms, achieving the first purely sense-level representation learning system with linear-time sense selection. We leverage reinforcement learning to enable joint training on the proposed modules, and introduce various exploration techniques on sense selection for better robustness. The experiments on benchmark data show that the proposed approach achieves the state-of-the-art performance on synonym selection as well as on contextual word similarities in terms of MaxSimC

    Embedding Words and Senses Together via Joint Knowledge-Enhanced Training

    Get PDF
    Word embeddings are widely used in Nat-ural Language Processing, mainly due totheir success in capturing semantic infor-mation from massive corpora. However,their creation process does not allow thedifferent meanings of a word to be auto-matically separated, as it conflates theminto a single vector. We address this issueby proposing a new model which learnsword and sense embeddings jointly. Ourmodel exploits large corpora and knowl-edge from semantic networks in order toproduce a unified vector space of wordand sense embeddings. We evaluate themain features of our approach both qual-itatively and quantitatively in a variety oftasks, highlighting the advantages of theproposed method in comparison to state-of-the-art word- and sense-based models

    Distantly Labeling Data for Large Scale Cross-Document Coreference

    Full text link
    Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.Comment: 16 pages, submitted to ECML 201
    • …
    corecore