2,480 research outputs found

    Segmentation Of Ultisequence Medical Images Using Random Walks Algorithm And Rough Sets Theory

    Get PDF
    Segmentasi imej Magnetic Resonance (MR) merupakan satu tugas klinikal yang mencabar. Selalunya, satu jenis imej MR tidak mencukupi untuk memberikan maklumat yang lengkap mengenai sesuatu tisu patologi atau objek visual dari imej Accurate Magnetic Resonance (MR) image segmentation is a clinically challenging task. More often than not, one type of MRI image is insufficient to provide the complete information about a pathological tissue or a visual object from the imag

    A Review of MRI Acute Ischemic Stroke Lesion Segmentation

    Get PDF
    Immediate treatment of a stroke can minimize long-term effects and even help reduce death risk. In the ischemic stroke cases, there are two zones of injury which are ischemic core and ischemic penumbra zone. The ischemic penumbra indicates the part that is located around the infarct core that is at risk of developing a brain infarction. Recently, various segmentation methods of infarct lesion from the MRI input images were developed and these methods gave a high accuracy in the extraction and detection of the infarct core. However, only some limited works have been reported to isolate the penumbra tissues and infarct core separately. The challenges exist in ischemic core identification are traditional approach prone to error, time-consuming and tedious for medical expert which could delay the treatment. In this paper, we study and analyse the segmentation algorithms for brain MRI ischemic of different categories. The focus of the review is mainly on the segmentation algorithms of infarct core with penumbra and infarct core only. We highlight the advantages and limitations alongside the discussion of the capabilities of these segmentation algorithms and its key challenges. The paper also devised a generic structure for automated stroke lesion segmentation. The performance of these algorithms was investigated by comparing different parameters of the surveyed algorithms. In addition, a new structure of the segmentation process for segmentation of penumbra is proposed by considering the challenges remains. The best accuracy for segmentation of infarct core and penumbra tissues is 82.1% whereas 99.1% for segmentation infarct core only. Meanwhile, the shortest average computational time recorded was 3.42 seconds for segmenting 10 slices of MR images. This paper presents an inclusive analysis of the discussed papers based on different categories of the segmentation algorithm. The proposed structure is important to enable a more robust and accurate assessment in clinical practice. This could be an opportunity for the medical and engineering sector to work together in designing a complete end-to-end automatic framework in detecting stroke lesion and penumbra

    Segmentation of Infant Brain Using Nonnegative Matrix Factorization

    Get PDF
    This study develops an atlas-based automated framework for segmenting infants\u27 brains from magnetic resonance imaging (MRI). For the accurate segmentation of different structures of an infant\u27s brain at the isointense age (6-12 months), our framework integrates features of diffusion tensor imaging (DTI) (e.g., the fractional anisotropy (FA)). A brain diffusion tensor (DT) image and its region map are considered samples of a Markov-Gibbs random field (MGRF) that jointly models visual appearance, shape, and spatial homogeneity of a goal structure. The visual appearance is modeled with an empirical distribution of the probability of the DTI features, fused by their nonnegative matrix factorization (NMF) and allocation to data clusters. Projecting an initial high-dimensional feature space onto a low-dimensional space of the significant fused features with the NMF allows for better separation of the goal structure and its background. The cluster centers in the latter space are determined at the training stage by the K-means clustering. In order to adapt to large infant brain inhomogeneities and segment the brain images more accurately, appearance descriptors of both the first-order and second-order are taken into account in the fused NMF feature space. Additionally, a second-order MGRF model is used to describe the appearance based on the voxel intensities and their pairwise spatial dependencies. An adaptive shape prior that is spatially variant is constructed from a training set of co-aligned images, forming an atlas database. Moreover, the spatial homogeneity of the shape is described with a spatially uniform 3D MGRF of the second-order for region labels. In vivo experiments on nine infant datasets showed promising results in terms of the accuracy, which was computed using three metrics: the 95-percentile modified Hausdorff distance (MHD), the Dice similarity coefficient (DSC), and the absolute volume difference (AVD). Both the quantitative and visual assessments confirm that integrating the proposed NMF-fused DTI feature and intensity MGRF models of visual appearance, the adaptive shape prior, and the shape homogeneity MGRF model is promising in segmenting the infant brain DTI
    corecore