689 research outputs found

    A Sequential Topic Model for Mining Recurrent Activities from Long Term Video Logs

    Get PDF
    This paper introduces a novel probabilistic activity modeling approach that mines recurrent sequential patterns called motifs from documents given as word ×\times time count matrices (e.g., videos). In this model, documents are represented as a mixture of sequential activity patterns (our motifs) where the mixing weights are defined by the motif starting time occurrences. The novelties are multi fold. First, unlike previous approaches where topics modeled only the co-occurrence of words at a given time instant, our motifs model the co-occurrence and temporal order in which the words occur within a temporal window. Second, unlike traditional Dynamic Bayesian networks (DBN), our model accounts for the important case where activities occur concurrently in the video (but not necessarily in synchrony), i.e., the advent of activity motifs can overlap. The learning of the motifs in these difficult situations is made possible thanks to the introduction of latent variables representing the activity starting times, enabling us to implicitly align the occurrences of the same pattern during the joint inference of the motifs and their starting times. As a third novelty, we propose a general method that favors the recovery of sparse distributions, a highly desirable property in many topic model applications, by adding simple regularization constraints on the searched distributions to the data likelihood optimization criteria. We substantiate our claims with experiments on synthetic data to demonstrate the algorithm behavior, and on four video datasets with significant variations in their activity content obtained from static cameras. We observe that using low-level motion features from videos, our algorithm is able to capture sequential patterns that implicitly represent typical trajectories of scene object

    Predicting Corrosion Damage in the Human Body Using Artificial Intelligence: In Vitro Progress and Future Applications Applications

    Get PDF
    Artificial intelligence (AI) is used in the clinic to improve patient care. While the successes illustrate the impact AI can have, few studies have led to improved clinical outcomes. A gap in translational studies, beginning at the basic science level, exists. In this review, we focus on how AI models implemented in non-orthopedic fields of corrosion science may apply to the study of orthopedic alloys. We first define and introduce fundamental AI concepts and models, as well as physiologically relevant corrosion damage modes. We then systematically review the corrosion/AI literature. Finally, we identify several AI models that may be Preprint implemented to study fretting, crevice, and pitting corrosion of titanium and cobalt chrome alloys

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness
    • …
    corecore