724 research outputs found

    A Machine Learning Approach to Obese-Inflammatory Phenotyping

    Get PDF
    Obesity is the accumulation of an abnormal, or excessive, amount of fat in the body, which can have negative effects on overall health. This excess accumulation of macronutrients in adipose tissue can cause the release of inflammatory mediators, leading to a proinflammatory state. Inflammation is a known risk factor for various health conditions, including cardiovascular diseases, metabolic syndrome, and diabetes. This study sought to examine the use of data mining methods, particularly clustering algorithms, to identify inflammatory biomarker phenotypes and their association with obesity in a local adolescent population. The algorithms evaluated in this study included: k-means, Ward\u27s hierarchical agglomerative method, fuzzy c-means, Gaussian mixture model, and principal component analysis (PCA). The algorithms were assessed using different validation indices, graphs, as well as clinical interpretation of the resulting clusters. The results showed that k-Means, k = 3, produced the most accurate clusters. Based on their characterization, the clusters were defined as: severe risk for metabolic dysfunction, moderate risk for metabolic dysfunction, and normal metabolic function. Adolescents with a higher BMI and waist circumference had higher odds of being classified in the severe metabolic risk cluster. Although PCA is a different type of clustering algorithm, it supported the resultant cluster by grouping their dominant inflammatory biomarkers characteristics into separate principal components. These findings suggested a strong relationship between CRP and Leptin inflammatory biomarkers and higher BMI and waist circumference in the local adolescent study population

    Semi-supervised learning towards automated segmentation of PET images with limited annotations: Application to lymphoma patients

    Full text link
    The time-consuming task of manual segmentation challenges routine systematic quantification of disease burden. Convolutional neural networks (CNNs) hold significant promise to reliably identify locations and boundaries of tumors from PET scans. We aimed to leverage the need for annotated data via semi-supervised approaches, with application to PET images of diffuse large B-cell lymphoma (DLBCL) and primary mediastinal large B-cell lymphoma (PMBCL). We analyzed 18F-FDG PET images of 292 patients with PMBCL (n=104) and DLBCL (n=188) (n=232 for training and validation, and n=60 for external testing). We employed FCM and MS losses for training a 3D U-Net with different levels of supervision: i) fully supervised methods with labeled FCM (LFCM) as well as Unified focal and Dice loss functions, ii) unsupervised methods with Robust FCM (RFCM) and Mumford-Shah (MS) loss functions, and iii) Semi-supervised methods based on FCM (RFCM+LFCM), as well as MS loss in combination with supervised Dice loss (MS+Dice). Unified loss function yielded higher Dice score (mean +/- standard deviation (SD)) (0.73 +/- 0.03; 95% CI, 0.67-0.8) compared to Dice loss (p-value<0.01). Semi-supervised (RFCM+alpha*LFCM) with alpha=0.3 showed the best performance, with a Dice score of 0.69 +/- 0.03 (95% CI, 0.45-0.77) outperforming (MS+alpha*Dice) for any supervision level (any alpha) (p<0.01). The best performer among (MS+alpha*Dice) semi-supervised approaches with alpha=0.2 showed a Dice score of 0.60 +/- 0.08 (95% CI, 0.44-0.76) compared to another supervision level in this semi-supervised approach (p<0.01). Semi-supervised learning via FCM loss (RFCM+alpha*LFCM) showed improved performance compared to supervised approaches. Considering the time-consuming nature of expert manual delineations and intra-observer variabilities, semi-supervised approaches have significant potential for automated segmentation workflows

    Fault analysis using state-of-the-art classifiers

    Get PDF
    Fault Analysis is the detection and diagnosis of malfunction in machine operation or process control. Early fault analysis techniques were reserved for high critical plants such as nuclear or chemical industries where abnormal event prevention is given utmost importance. The techniques developed were a result of decades of technical research and models based on extensive characterization of equipment behavior. This requires in-depth knowledge of the system and expert analysis to apply these methods for the application at hand. Since machine learning algorithms depend on past process data for creating a system model, a generic autonomous diagnostic system can be developed which can be used for application in common industrial setups. In this thesis, we look into some of the techniques used for fault detection and diagnosis multi-class and one-class classifiers. First we study Feature Selection techniques and the classifier performance is analyzed against the number of selected features. The aim of feature selection is to reduce the impact of irrelevant variables and to reduce computation burden on the learning algorithm. We introduce the feature selection algorithms as a literature survey. Only few algorithms are implemented to obtain the results. Fault data from a Radio Frequency (RF) generator is used to perform fault detection and diagnosis. Comparison between continuous and discrete fault data is conducted for the Support Vector Machines (SVM) and Radial Basis Function Network (RBF) classifiers. In the second part we look into one-class classification techniques and their application to fault detection. One-class techniques were primarily developed to identify one class of objects from all other possible objects. Since all fault occurrences in a system cannot be simulated or recorded, one-class techniques help in identifying abnormal events. We introduce four one-class classifiers and analyze them using Receiver-Operating Characteristic (ROC) curve. We also develop a feature extraction method for the RF generator data which is used to obtain results for one-class classifiers and Radial Basis Function Network two class classification. To apply these techniques for real-time verification, the RIT Fault Prediction software is built. LabView environment is used to build a basic data management and fault detection using Radial Basis Function Network. This software is stand alone and acts as foundation for future implementations

    Wind Turbine Fault Detection: an Unsupervised vs Semi-Supervised Approach

    Get PDF
    The need for renewable energy has been growing in recent years for the reasons we all know, wind power is no exception. Wind turbines are complex and expensive structures and the need for maintenance exists. Conditioning Monitoring Systems that make use of supervised machine learning techniques have been recently studied and the results are quite promising. Though, such systems still require the physical presence of professionals but with the advantage of gaining insight of the operating state of the machine in use, to decide upon maintenance interventions beforehand. The wind turbine failure is not an abrupt process but a gradual one. The main goal of this dissertation is: to compare semi-supervised methods to at tack the problem of automatic recognition of anomalies in wind turbines; to develop an approach combining the Mahalanobis Taguchi System (MTS) with two popular fuzzy partitional clustering algorithms like the fuzzy c-means and archetypal analysis, for the purpose of anomaly detection; and finally to develop an experimental protocol to com paratively study the two types of algorithms. In this work, the algorithms Local Outlier Factor (LOF), Connectivity-based Outlier Factor (COF), Cluster-based Local Outlier Factor (CBLOF), Histogram-based Outlier Score (HBOS), k-nearest-neighbours (k-NN), Subspace Outlier Detection (SOD), Fuzzy c-means (FCM), Archetypal Analysis (AA) and Local Minimum Spanning Tree (LoMST) were explored. The data used consisted of SCADA data sets regarding turbine sensorial data, 8 to tal, from a wind farm in the North of Portugal. Each data set comprises between 1070 and 1096 data cases and characterized by 5 features, for the years 2011, 2012 and 2013. The analysis of the results using 7 different validity measures show that, the CBLOF al gorithm got the best results in the semi-supervised approach while LoMST won in the unsupervised scenario. The extension of both FCM and AA got promissing results.A necessidade de produzir energia renovável tem vindo a crescer nos últimos anos pelas razões que todos sabemos, a energia eólica não é excepção. As turbinas eólicas são es truturas complexas e caras e a necessidade de manutenção existe. Sistemas de Condição Monitorizada utilizando técnicas de aprendizagem supervisionada têm vindo a ser estu dados recentemente e os resultados são bastante promissores. No entanto, estes sistemas ainda exigem a presença física de profissionais, mas com a vantagem de obter informa ções sobre o estado operacional da máquina em uso, para decidir sobre intervenções de manutenção antemão. O principal objetivo desta dissertação é: comparar métodos semi-supervisionados para atacar o problema de reconhecimento automático de anomalias em turbinas eólicas; desenvolver um método que combina o Mahalanobis Taguchi System (MTS) com dois mé todos de agrupamento difuso bem conhecidos como fuzzy c-means e archetypal analysis, no âmbito de deteção de anomalias; e finalmente desenvolver um protocolo experimental onde é possível o estudo comparativo entre os dois diferentes tipos de algoritmos. Neste trabalho, os algoritmos Local Outlier Factor (LOF), Connectivity-based Outlier Factor (COF), Cluster-based Local Outlier Factor (CBLOF), Histogram-based Outlier Score (HBOS), k-nearest-neighbours (k-NN), Subspace Outlier Detection (SOD), Fuzzy c-means (FCM), Archetypal Analysis (AA) and Local Minimum Spanning Tree (LoMST) foram explorados. Os conjuntos de dados utilizados provêm do sistema SCADA, referentes a dados sen soriais de turbinas, 8 no total, com origem num parque eólico no Norte de Portugal. Cada um está compreendendido entre 1070 e 1096 observações e caracterizados por 5 caracte rísticas, para os anos 2011, 2012 e 2013. A ánalise dos resultados através de 7 métricas de validação diferentes mostraram que, o algoritmo CBLOF obteve os melhores resultados na abordagem semi-supervisionada enquanto que o LoMST ganhou na abordagem não supervisionada. A extensão do FCM e do AA originou resultados promissores

    Bridging the semantic gap in content-based image retrieval.

    Get PDF
    To manage large image databases, Content-Based Image Retrieval (CBIR) emerged as a new research subject. CBIR involves the development of automated methods to use visual features in searching and retrieving. Unfortunately, the performance of most CBIR systems is inherently constrained by the low-level visual features because they cannot adequately express the user\u27s high-level concepts. This is known as the semantic gap problem. This dissertation introduces a new approach to CBIR that attempts to bridge the semantic gap. Our approach includes four components. The first one learns a multi-modal thesaurus that associates low-level visual profiles with high-level keywords. This is accomplished through image segmentation, feature extraction, and clustering of image regions. The second component uses the thesaurus to annotate images in an unsupervised way. This is accomplished through fuzzy membership functions to label new regions based on their proximity to the profiles in the thesaurus. The third component consists of an efficient and effective method for fusing the retrieval results from the multi-modal features. Our method is based on learning and adapting fuzzy membership functions to the distribution of the features\u27 distances and assigning a degree of worthiness to each feature. The fourth component provides the user with the option to perform hybrid querying and query expansion. This allows the enrichment of a visual query with textual data extracted from the automatically labeled images in the database. The four components are integrated into a complete CBIR system that can run in three different and complementary modes. The first mode allows the user to query using an example image. The second mode allows the user to specify positive and/or negative sample regions that should or should not be included in the retrieved images. The third mode uses a Graphical Text Interface to allow the user to browse the database interactively using a combination of low-level features and high-level concepts. The proposed system and ail of its components and modes are implemented and validated using a large data collection for accuracy, performance, and improvement over traditional CBIR techniques

    A novel ensemble clustering for operational transients classification with application to a nuclear power plant turbine

    Get PDF
    International audienceThe objective of the present work is to develop a novel approach for combining in an ensemble multiple base clusterings of operational transients of industrial equipment, when the number of clusters in the final consensus clustering is unknown. A measure of pairwise similarity is used to quantify the co-association matrix that describes the similarity among the different base clusterings. Then, a Spectral Clustering technique of literature, embedding the unsupervised K-Means algorithm, is applied to the co-association matrix for finding the optimum number of clusters of the final consensus clustering, based on Silhouette validity index calculation. The proposed approach is developed with reference to an artificial case study, properly designed to mimic the signal trend behavior of a Nuclear Power Plant (NPP) turbine during shutdown. The results of the artificial case have been compared with those achieved by a state-of-art approach, known as Cluster-based Similarity Partitioning and Serial Graph Partitioning and Fill-reducing Matrix Ordering Algorithms (CSPA-METIS). The comparison shows that the proposed approach is able to identify a final consensus clustering that classifies the transients with better accuracy and robustness compared to the CSPA-METIS approach. The approach is, then, validated on an industrial case concerning 149 shutdown transients of a NPP turbine
    corecore