3,374 research outputs found

    A cluster-based mobile data-gathering scheme for underwater sensor networks

    Get PDF

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    An efficient AUV-aided data collection in underwater sensor networks

    Get PDF

    Implementation of relay-based systems in wireless cellular networks

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2010Includes bibliographical references (leaves: 69-72)Text in English; Abstract: Turkish and Englishxiii, 72 leavesThe wireless cellular networks are limited by interference and coverage issues where the users at the edge of the cell usually do not receive enough signal energy. To combat these problems and provide higher signal to interference noise ratio and capacity without increasing the transmit power, the idea of using relays in cellular networks was explored and evaluated in the literature. On the other hand, multiple input multiple output (MIMO) antenna systems have great potential to increase capacity and reliability of a wireless cellular network compared to single input single output systems. Hence, the integration of MIMO systems in the relay-based cellular networks has great potential to meet the growing demands of future communication. In this thesis, we explore the performances in conventional and relay-based wireless systems with single and multiple antennas by ad justing the frequency reuse factor as one and four. We consider wireless cellular based networks where six fixed relays are placed evenly in each cell in a hexagonal layout. A user chooses to receive the transmitted signal either directly from the base station or via one of the relays by employing selection algorithms. Throughout this thesis, we first determine the optimum relay locations considering different relay powers. Then, we investigate the system capacity for the cell with and without relays. Next, we examine the capacity performances by changing the cell diameter and the relay power. Finally, we explore the performances of relay based networks with multiple antennas

    Integrated placement and routing of relay nodes for fault-tolerant hierarchical sensor networks

    Get PDF
    In two-tiered sensor networks, using higher-powered relay nodes as cluster heads has been shown to lead to further improvements in network performance. Placement of such relay nodes focuses on achieving specified coverage and connectivity requirements with as few relay nodes as possible. Existing placement strategies typically are unaware of energy dissipation due to routing and are not capable of optimizing the routing scheme and placement concurrently. We, in this thesis, propose an integrated integer linear program (ILP) formulation that determines the minimum number of relay nodes, along with their locations and a suitable communication strategy such that the network has a guaranteed lifetime as well as ensuring the pre-specified level of coverage (ks) and connectivity (kr). We also present an intersection based approach for creating the initial set of potential relay node positions, which are used by our ILP, and evaluate its performance under different conditions. Experimental results on networks with hundreds of sensor nodes show that our approach leads to significant improvement over existing energy-unaware placement schemes

    Optimization strategies for two-tiered sensor networks.

    Get PDF
    Sensor nodes are tiny, low-powered and multi-functional devices operated by lightweight batteries. Replacing or recharging batteries of sensor nodes in a network is usually not feasible so that a sensor network fails when the battery power in critical node(s) is depleted. The limited transmission range and the battery power of sensor nodes affect the scalability and the lifetime of sensor networks. Recently, relay nodes, acting as cluster heads, have been proposed in hierarchical sensor networks. The placement of relay nodes in a sensor network, such that all the sensor nodes are covered using a minimum number of relay nodes is a NP-hard problem. We propose a simple strategy for the placement of relay nodes in a two-tiered network that ensures connectivity and fault tolerance. We also propose two ILP formulations for finding the routing strategy so that the lifetime of any relay node network may be maximized.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .B37. Source: Masters Abstracts International, Volume: 45-01, page: 0348. Thesis (M.Sc.)--University of Windsor (Canada), 2006
    corecore