589 research outputs found

    Katakan tidak pada rasuah

    Get PDF
    Isu atau masalah rasuah menjadi topik utama sama ada di peringkat antarabangsa mahupun di peringkat dalam negara. Pertubuhan Bangsa- bangsa Bersatu menegaskan komitmen komuniti antarabangsa bertegas untuk mencegah dan mengawal rasuah melalui buku bertajuk United Nations Convention against Corruption. Hal yang sama berlaku di Malaysia. Melalui pernyataan visi oleh mantan Perdana Menteri Malaysia, Tun Dr. Mahathir bin Mohamed memberikan indikasi bahawa kerajaan Malaysia komited untuk mencapai aspirasi agar Malaysia dikenali kerana integriti dan bukannya rasuah. Justeru, tujuan penulisan bab ini adalah untuk membincangkan rasuah dari beberapa sudut termasuk perbincangan dari sudut agama Islam, faktor-faktor berlakunya gejala rasuah, dan usaha-usaha yang dijalankan di Malaysia untuk membanteras gejala rasuah. Perkara ini penting bagi mengenalpasti penjawat awam menanamkan keyakinan dalam melaksanakan tanggungjawab dengan menghindari diri daripada rasuah agar mereka sentiasa peka mengutamakan kepentingan awam

    Wireless sensor network as a distribute database

    Get PDF
    Wireless sensor networks (WSN) have played a role in various fields. In-network data processing is one of the most important and challenging techniques as it affects the key features of WSNs, which are energy consumption, nodes life circles and network performance. In the form of in-network processing, an intermediate node or aggregator will fuse or aggregate sensor data, which are collected from a group of sensors before transferring to the base station. The advantage of this approach is to minimize the amount of information transferred due to lack of computational resources. This thesis introduces the development of a hybrid in-network data processing for WSNs to fulfil the WSNs constraints. An architecture for in-network data processing were proposed in clustering level, data compression level and data mining level. The Neighbour-aware Multipath Cluster Aggregation (NMCA) is designed in the clustering level, which combines cluster-based and multipath approaches to process different packet loss rates. The data compression schemes and Optimal Dynamic Huffman (ODH) algorithm compressed data in the cluster head for the compressed level. A semantic data mining for fire detection was designed for extracting information from the raw data by the semantic data-mining model is developed to improve data accuracy and extract the fire event in the simulation. A demo in-door location system with in-network data processing approach is built to test the performance of the energy reduction of our designed strategy. In conclusion, the added benefits that the technical work can provide for in-network data processing is discussed and specific contributions and future work are highlighted

    Enhancing Security and Energy Efficiency in Wireless Sensor Network Routing with IOT Challenges: A Thorough Review

    Get PDF
    Wireless sensor networks (WSNs) have emerged as a crucial component in the field of networking due to their cost-effectiveness, efficiency, and compact size, making them invaluable for various applications. However, as the reliance on WSN-dependent applications continues to grow, these networks grapple with inherent limitations such as memory and computational constraints. Therefore, effective solutions require immediate attention, especially in the age of the Internet of Things (IoT), which largely relies on the effectiveness of WSNs. This study undertakes a comprehensive review of research conducted between 2018 and 2020, categorizing it into six main domains: 1) Providing an overview of WSN applications, management, and security considerations. 2) Focusing on routing and energy-saving techniques. 3) Reviewing the development of methods for information gathering, emphasizing data integrity and privacy. 4) Emphasizing connectivity and positioning techniques. 5) Examining studies that explore the integration of IoT technology into WSNs with an eye on secure data transmission. 6) Highlighting research efforts aimed at energy efficiency. The study addresses the motivation behind employing WSN applications in IoT technologies, as well as the challenges, obstructions, and solutions related to their application and development. It underscores that energy consumption remains a paramount issue in WSNs, with untapped potential for improving energy efficiency while ensuring robust security. Furthermore, it identifies existing approaches' weaknesses, rendering them inadequate for achieving energy-efficient routing in secure WSNs. This review sheds light on the critical challenges and opportunities in the field, contributing to a deeper understanding of WSNs and their role in secure IoT applications

    Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Get PDF
    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system

    Can SDN Technology Be Transported to Software-Defined WSN/IoT?

    Full text link
    © 2016 IEEE. Wireless sensor networks (WSNs) are essential elements of the Internet of Things ecosystem, as such, they encounter numerous IoT challenging architectural, management and application issues. These include inflexible control, manual configuration and management of sensor nodes, difficulty in an orchestration of resources, and virtualizing sensor network resources for on-demand applications and services. Addressing these issues presents a real challenge for WSNs and IoTs. By separating the network control plane from the data forwarding plane, Software-defined networking (SDN) has emerged as network technology that addresses similar problems of current switched-networks. Despite the differences between switched network and wireless sensor network domains, the SDN technology has a real potential to revolutionize WSNs/IoTs and address their challenging issues. However, very little has been attempted to bring the SDN paradigm to WSNs. This paper identifies weaknesses of existing research efforts that aims to bring the benefits of SDN to WSNs by mapping the control plane, the OpenFlow protocol, and the functionality between the two network domains. In particular, the paper investigates the difficulties and challenges in the development of software-defined wireless sensor networking (SDWSN). Finally, the paper proposes VSensor, SDIoT controller, SFlow components with specific and relevant functionality for an architecture of an SDWSN or SDIoT infrastructure

    Multifaceted Optimization of Energy Efficiency for Stationary WSN Applications

    Get PDF
    Stationary Wireless Sensor Networks (S-WSNs) consist of battery-powered and resource-constrained sensor nodes distributed at fixed locations to cooperatively monitor the environment or an object and provide persistent data acquisition. These systems are being practiced in many applications, ranging from disaster warning systems for instant event detection to structural health monitoring for effective maintenance. Despite the diversity of S-WSN applications, one common requirement is to achieve a long lifespan for a higher value-to-cost ratio. However, the variety of WSN deployment environments and use cases imply that there is no silver bullet to solve the energy issue completely. This thesis is a summary of six publications. Our  contributions include four energy optimization techniques on three layers for S-WSN applications. From the bottom up, we designed an ultra-low power smart trigger to integrate environment perceptibility into the hardware. On the network layer, we propose a reliable clustering protocol and a cluster-based data aggregation scheme. This scheme offers topology optimization together with in-network data processing. On the application layer, we extend an industrial standard protocol XMPP to incorporate WSN characteristics for unified information dissemination. Our protocol extensions facilitate WSN application development by adopting IMPS on the Internet. In addition, we conducted a performance analysis of one lightweight security protocol for WSNs called HIP Diet Exchange, which is being standardized by IETF. We suggested a few improvements and potential applications for HIP DEX. In the process of improving energy efficiency, we explore modular and generic design for better system integration and scalability. Our hardware invention can extend features by adding new transducers onboard. The clustering protocol and data aggregation scheme provides a general self-adaptive method to increase information throughput per energy cost while tolerating network dynamics. The unified XMPP extensions aim to support seamless information flow for the Web of Things. The results presented in this thesis demonstrate the importance of multifaceted optimization strategy in WSN development. An optimal WSN system should comprehend multiple factors to boost energy efficiency in a holistic approach
    • …
    corecore