208 research outputs found

    Multipath Load Balancing Routing for Internet of Things

    Get PDF
    In the next-generation technology, Internet of Things (IoT), billions of smart objects will communicate with one another to make human lives more convenient. IoT is based on wireless sensor network (WSN), and Zigbee is one of the most popular WSN protocols. A mature IoT environment involves heavy WSN data transmission causing bottleneck problems. However, Zigbee’s AODV routing stack does not have load balance mechanism to handle bursty traffic. Therefore, we develop Multipath Load Balancing (MLB) Routing to substitute Zigbee’s AODV routing. Our proposed MLB consists of two main designs: LAYER_DESIGN and LOAD_BALANCE. LAYER_DESIGN assigns nodes into different layers based on node distance to IoT gateway. Nodes can have multiple next-hops delivering IoT data. All neighboring layer nodes exchange flow information containing current load, used by LOAD_BALANCE to estimate future load of next-hops. With MLB, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balance and avoid bottlenecks. Compared with Zigbee’s AODV and multipath version AODV (AOMDV), experiment results demonstrate that MLB achieves better load balance, lower packet loss rate, and better routing connectivity ratio in both grid and random uniform topologies. MLB provides a more convincing routing solution for IoT applications

    Energy-aware routing protocols in wireless sensor networks

    Get PDF
    Saving energy and increasing network lifetime are significant challenges in the field of Wireless Sensor Networks (WSNs). Energy-aware routing protocols have been introduced for WSNs to overcome limitations of WSN including limited power resources and difficulties renewing or recharging sensor nodes batteries. Furthermore, the potentially inhospitable environments of sensor locations, in some applications, such as the bottom of the ocean, or inside tornados also have to be considered. ZigBee is one of the latest communication standards designed for WSNs based on the IEEE 802.15.4 standard. The ZigBee standard supports two routing protocols, the Ad hoc On-demand Distance Vector (AODV), and the cluster-tree routing protocols. These protocols are implemented to establish the network, form clusters, and transfer data between the nodes. The AODV and the cluster-tree routing protocols are two of the most efficient routing protocols in terms of reducing the control message overhead, reducing the bandwidth usage in the network, and reducing the power consumption of wireless sensor nodes compared to other routing protocols. However, neither of these protocols considers the energy level or the energy consumption rate of the wireless sensor nodes during the establishment or routing processes. (Continues...)

    Designing of Advanced and Efficient Tree Routing in Zigbee Wireless Network

    Get PDF
    Zigbee is a distinctive communication criterions principally aimed to be deployed for wireless personal area networks with low rate. It’s an IEEE 802.15.4 based usual incurring minimal amount of complexity, cut rate and low strength consumption. Zigbee cluster-tree be good-recognized zigbee topologies especially suitable for WSN’s consuming low strength and sustaining cut rate since it supports power rescue operations. When Zigbee cluster network generates more traffic, the performance of the network tends to decline due to lack of bandwidth utilization. The earlier techniques employed for the purpose was providing supple routing and increased bandwidth utilization. But they tend to compromise on an ideally and convergence rage of bandwidth usages. Thereby we propose as Enhanced Distributed Adoptive Parent (EDAP) based structure for Zigbee cluster tree networks that manages changing traffic weight communication at any granted moment. The nodes collecting the sensed data are appropriated depending on the traffic load demands. Such a framework when applied improves bandwidth of the network and in turn improves the overall performance of the network

    Routing Protocols for Wireless Sensor Networks (WSNs)

    Get PDF
    Wireless sensor networks (WSNs) are achieving importance with the passage of time. Out of massive usage of wireless sensor networks, few applications demand quick data transfer including minimum possible interruption. Several applications give importance to throughput and they have not much to do with delay. It all rest on the applications desires that which parameter is more favourite. The knowledge of network structure and routing protocol is very important and it should be appropriate for the requirement of the usage. In the end a performance analysis of different routing protocols is made using a WLAN and a ZigBee based Wireless Sensor Network

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Networked control system with MANET communication and AODV routing

    Get PDF
    The industries are presently exploring the use of wired and wireless systems for control, automation, and monitoring. The primary benefit of wireless technology is that it reduces the installation cost, in both money and labor terms, as companies already have a significant investment in wiring. The research article presents the work on the analysis of Mobile Ad Hoc Network (MANET) in a wireless real-time communication medium for a Networked Control System (NCS), and determining whether the simulated behavior is significant for a plant or not. The behavior of the MANET is analyzed for Ad-hoc on-demand distance vector routing (AODV) that maintenances communication among 150 nodes for NCS. The simulation is carried out in Network Simulator (NS2) software with different nodes cluster to estimate the network throughput, end-to-end delay, packet delivery ratio (PDR), and control overhead. The benefit of MANET is that it has a fixed topology, which permits flexibility since mobile devices may be used to construct ad-hoc networks anywhere, scalability because more nodes can be added to the network, and minimal operating expenses in that no original infrastructure needs to be developed. AODV routing is a flat routing system that does not require central routing nodes. As the network grows in size, the network can be scaled to meet the network design and configuration requirements. AODV is flexible to support different configurations and topological nodes in dynamic networks because of its versatility. The advantage of such network simulation and routing behavior provides the future direction for the researchers who are working towards the embedded hardware solutions for NCS, as the hardware complexity depends on the delay, throughput, and PDR

    Energy Efficient Routing Algorithms for Wireless Sensor Networks and Performance Evaluation of Quality of Service for IEEE 802.15.4 Networks

    Get PDF
    The popularity of Wireless Sensor Networks (WSN) have increased tremendously in recent time due to growth in Micro-Electro-Mechanical Systems (MEMS) technology. WSN has the potentiality to connect the physical world with the virtual world by forming a network of sensor nodes. Here, sensor nodes are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the network‘s lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. In this thesis, clustering based routing protocols for WSNs have been discussed. In cluster-based routing, special nodes called cluster heads form a wireless backbone to the sink. Each cluster heads collects data from the sensors belonging to its cluster and forwards it to the sink. In heterogeneous networks, cluster heads have powerful energy devices in contrast to homogeneous networks where all nodes have uniform and limited resource energy. So, it is essential to avoid quick depletion of cluster heads. Hence, the cluster head role rotates, i.e., each node works as a cluster head for a limited period of time. Energy saving in these approaches can be obtained by cluster formation, cluster-head election, data aggregation at the cluster-head nodes to reduce data redundancy and thus save energy. The first part of this thesis discusses methods for clustering to improve energy efficiency of homogeneous WSN. It also proposes Bacterial Foraging Optimization (BFO) as an algorithm for cluster head selection for WSN. The simulation results show improved performance of BFO based optimization in terms of total energy dissipation and no of alive nodes of the network system over LEACH, K-Means and direct methods. IEEE 802.15.4 is the emerging next generation standard designed for low-rate wireless personal area networks (LR-WPAN). The second part of the work reported here in provides performance evaluation of quality of service parameters for WSN based on IEEE 802.15.4 star and mesh topology. The performance studies have been evaluated for varying traffic loads using MANET routing protocol in QualNet 4.5. The data packet delivery ratio, average end-to-end delay, total energy consumption, network lifetime and percentage of time in sleep mode have been used as performance metrics. Simulation results show that DSR (Dynamic Source Routing) performs better than DYMO (Dynamic MANET On-demand) and AODV (Ad–hoc On demand Distance Vector) routing protocol for varying traffic loads rates

    A smart sensor grid to enhance irrigation techniques in Jordan using a novel event-based routing protocol

    Get PDF
    Due to rapid changes in climatic conditions worldwide, environmental monitoring has become one of the greatest concerns in the last few years. With the advancement in wireless sensing technology, it is now possible to monitor and track fine-grained changes in harsh outdoor environments. Wireless sensor networks (WSN) provide very high quality and accurate analysis for monitoring of both spatial and temporal data, thus providing the opportunity to monitor harsh outdoor environments. However, to deploy and maintain a WSN in such harsh environments is a great challenge for researchers and scientists. Several routing protocols exist for data dissemination and power management but they suffer from various disadvantages. In our case study, there are very limited water resources in the Middle East, hence soil moisture measurements must be taken into account to manage irrigation and аgriculturаl projects. In order to meet these challenges, a Smart Grid that supports a robust, reactive, event-based routing protocol is developed using Ad hoc On-Demand Multipath Distance Vector (AOMDV) as a starting point. A prototype WSN network of 5 nodes is built and a detailed simulation of 30 nodes is also developed to test the scalability of the new system

    Performance and energy efficiency in wireless self-organized networks

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed
    corecore