66 research outputs found

    Impact of drone route geometry on information collection in wireless sensor networks

    Get PDF
    The recent technological evolution of drones along with the constantly growing maturity of its commercialization, has led to the emergence of novel drone-based applications within the field of wireless sensor networks for information collection purposes. In such settings, especially when deployed in outdoor environments with limited external control, energy consumption and robustness are challenging problems for the system’s operation. In the present paper, a drone-assisted wireless sensor network is studied, the aim being to coordinate the routing of information (among the ground nodes and its propagation to the drone), investigating several drone trajectories or route shapes and examining their impact on information collection (the aim being to minimize transmissions and consequently, energy consumption). The main contribution lies on the proposed algorithms that coordinate the communication between (terrestrial) sensor nodes and the drone that may follow different route shapes. It is shown through simulations using soft random geometric graphs that the number of transmitted messages for each drone route shape depends on the rotational symmetry around the center of each shape. An interesting result is that the higher the order of symmetry, the lower the number of transmitted messages for data collection. Contrary, for those cases that the order of symmetry is the same, even for different route shapes, similar number of messages is transmitted. In addition to the simulation results, an experimental demonstration, using spatial data from grit bin locations, further validates the proposed solution under real-world conditions, demonstrating the applicability of the proposed approach.publishedVersio

    An overview of VANET vehicular networks

    Full text link
    Today, with the development of intercity and metropolitan roadways and with various cars moving in various directions, there is a greater need than ever for a network to coordinate commutes. Nowadays, people spend a lot of time in their vehicles. Smart automobiles have developed to make that time safer, more effective, more fun, pollution-free, and affordable. However, maintaining the optimum use of resources and addressing rising needs continues to be a challenge given the popularity of vehicle users and the growing diversity of requests for various services. As a result, VANET will require modernized working practices in the future. Modern intelligent transportation management and driver assistance systems are created using cutting-edge communication technology. Vehicular Ad-hoc networks promise to increase transportation effectiveness, accident prevention, and pedestrian comfort by allowing automobiles and road infrastructure to communicate entertainment and traffic information. By constructing thorough frameworks, workflow patterns, and update procedures, including block-chain, artificial intelligence, and SDN (Software Defined Networking), this paper addresses VANET-related technologies, future advances, and related challenges. An overview of the VANET upgrade solution is given in this document in order to handle potential future problems

    Green internet of things using UAVs in B5G networks: A review of applications and strategies

    Get PDF
    Recently, Unmanned Aerial Vehicles (UAVs) present a promising advanced technology that can enhance people life quality and smartness of cities dramatically and increase overall economic efficiency. UAVs have attained a significant interest in supporting many applications such as surveillance, agriculture, communication, transportation, pollution monitoring, disaster management, public safety, healthcare, and environmental preservation. Industry 4.0 applications are conceived of intelligent things that can automatically and collaboratively improve beyond 5G (B5G). Therefore, the Internet of Things (IoT) is required to ensure collaboration between the vast multitude of things efficiently anywhere in real-world applications that are monitored in real-time. However, many IoT devices consume a significant amount of energy when transmitting the collected data from surrounding environments. Due to a drone's capability to fly closer to IoT, UAV technology plays a vital role in greening IoT by transmitting collected data to achieve a sustainable, reliable, eco-friendly Industry 4.0. This survey presents an overview of the techniques and strategies proposed recently to achieve green IoT using UAVs infrastructure for a reliable and sustainable smart world. This survey is different from other attempts in terms of concept, focus, and discussion. Finally, various use cases, challenges, and opportunities regarding green IoT using UAVs are presented.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847577; and a research grant from Science Foundation Ireland (SFI) under Grant Number 16 / RC / 3918 (Ireland's European Structural and Investment Funds Programmes and the European Regional Development Fund 2014-2020)

    Drone Base Station Trajectory Management for Optimal Scheduling in LTE-Based Sparse Delay-Sensitive M2M Networks

    Get PDF
    Providing connectivity in areas out of reach of the cellular infrastructure is a very active area of research. This connectivity is particularly needed in case of the deployment of machine type communication devices (MTCDs) for critical purposes such as homeland security. In such applications, MTCDs are deployed in areas that are hard to reach using regular communications infrastructure while the collected data is timely critical. Drone-supported communications constitute a new trend in complementing the reach of the terrestrial communication infrastructure. In this study, drones are used as base stations to provide real-time communication services to gather critical data out of a group of MTCDs that are sparsely deployed in a marine environment. Studying different communication technologies as LTE, WiFi, LPWAN and Free-Space Optical communication (FSOC) incorporated with the drone communications was important in the first phase of this research to identify the best candidate for addressing this need. We have determined the cellular technology, and particularly LTE, to be the most suitable candidate to support such applications. In this case, an LTE base station would be mounted on the drone which will help communicate with the different MTCDs to transmit their data to the network backhaul. We then formulate the problem model mathematically and devise the trajectory planning and scheduling algorithm that decides the drone path and the resulting scheduling. Based on this formulation, we decided to compare between an Ant Colony Optimization (ACO) based technique that optimizes the drone movement among the sparsely-deployed MTCDs and a Genetic Algorithm (GA) based solution that achieves the same purpose. This optimization is based on minimizing the energy cost of the drone movement while ensuring the data transmission deadline missing is minimized. We present the results of several simulation experiments that validate the different performance aspects of the technique

    Efficient algorithms for MAC layer duty cycling and frame delivery in wireless sensor network

    Get PDF
    In Wireless Sensor Networks, with small, limited capacity devices now more prevalent, the issue of Neighbour Discovery has shifted. These devices utilise duty cycling methods in order to conserve battery power. Hence, the main issue is now that these devices may be awake at the same time in order to discover each other. When mobility increases complexity further. Rather than attempt to negate the issue of mobility, instead this thesis seeks to utilise a predictable sink mobility pattern in order to influence the duty cycling of static nodes. Literature demonstrates a move towards Mobility Awareness in Neighbour Discovery in mobile Wireless Sensor Networks. However, there is a gap identified with sink mobility in use. Therefore, this thesis aims to establish to what extent the mobility pattern of a Mobile Sink Node in a Wireless Sensor Network may be exploited at the MAC layer, to influence the performance of static nodes. Such that network efficiency may be improved with energy consumption reduced and balanced across nodes. This study proposes three novel lightweight algorithms, with processing which does not add to the energy consumption within sensor nodes, these being Mobility Aware Duty Cycling Algorithm (MADCAL), Mobility Aware Duty Cycling and Dynamic Preambling Algorithm (MADCaDPAL) and Dynamic Mobility and Energy Aware Algorithm (DMEAAL). These located in the MAC layer of static nodes and utilising knowledge of predictable sink node mobility. This is in order to create a dynamic communication threshold between static nodes on the sink path and the sink itself. Subsequently lessening competition for sink communication between nodes. In MADCAL this threshold is used to influence the sleep function in order that static nodes only awake and move to Clear Channel Assessment once the sink is within their threshold, improving energy consumption by up to 15%. The MADCaDPAL algorithm takes this approach further, using the threshold to directly influence Clear Channel Assessment and the sending of preambles, as such, closing off the threshold when the sink leaves it. This shows energy consumption lessening by close to 80% with a significant improvement in frame delivery to the sink. Finally, the DMEAAL algorithm utilises previous results to influence energy consumption in real-time by utilising a cross-layer approach, comparing current consumption to optimal target energy consumption and adjusting the threshold for each static node accordingly. This shows benefit in evening out results across nodes, thus improving network lifetime. All algorithms are achieved without the energy-consuming beacon messaging associated with Neighbour Discovery. Analysis and simulation results, tested on a lightweight implementation of a carrier-sense multiple-access-based MAC protocol, show a significant improvement in energy consumption and frame delivery in both controlled and random environments. In utilising a cross-layer approach to access energy consumption in static nodes, is it also shown to be possible to even out energy consumption across nodes by altering the communication threshold in real-time. As such, improving network lifetime by removing spikes in energy consumption in individual nodes
    • …
    corecore