4,119 research outputs found

    A Bio-Inspired Two-Layer Mixed-Signal Flexible Programmable Chip for Early Vision

    Get PDF
    A bio-inspired model for an analog programmable array processor (APAP), based on studies on the vertebrate retina, has permitted the realization of complex programmable spatio-temporal dynamics in VLSI. This model mimics the way in which images are processed in the visual pathway, what renders a feasible alternative for the implementation of early vision tasks in standard technologies. A prototype chip has been designed and fabricated in 0.5 μm CMOS. It renders a computing power per silicon area and power consumption that is amongst the highest reported for a single chip. The details of the bio-inspired network model, the analog building block design challenges and trade-offs and some functional tests results are presented in this paper.Office of Naval Research (USA) N-000140210884European Commission IST-1999-19007Ministerio de Ciencia y Tecnología TIC1999-082

    Neuromorphic analogue VLSI

    Get PDF
    Neuromorphic systems emulate the organization and function of nervous systems. They are usually composed of analogue electronic circuits that are fabricated in the complementary metal-oxide-semiconductor (CMOS) medium using very large-scale integration (VLSI) technology. However, these neuromorphic systems are not another kind of digital computer in which abstract neural networks are simulated symbolically in terms of their mathematical behavior. Instead, they directly embody, in the physics of their CMOS circuits, analogues of the physical processes that underlie the computations of neural systems. The significance of neuromorphic systems is that they offer a method of exploring neural computation in a medium whose physical behavior is analogous to that of biological nervous systems and that operates in real time irrespective of size. The implications of this approach are both scientific and practical. The study of neuromorphic systems provides a bridge between levels of understanding. For example, it provides a link between the physical processes of neurons and their computational significance. In addition, the synthesis of neuromorphic systems transposes our knowledge of neuroscience into practical devices that can interact directly with the real world in the same way that biological nervous systems do

    Programmable retinal dynamics in a CMOS mixed-signal array processor chip

    Get PDF
    The low-level image processing that takes place in the retina is intended to compress the relevant visual information to a manageable size. The behavior of the external layers of the biological retina has been successfully modelled by a Cellular Neural Network, whose evolution can be described by a set of coupled nonlinear differential equations. A mixed-signal VLSI implementation of the focal-plane low-level image processing based upon this biological model constitutes a feasible and cost effective alternative to conventional digital processing in real-time applications. For these reasons, a programmable array processor prototype chip has been designed and fabricated in a standard 0.5μm CMOS technology. The integrated system consists of a network of two coupled layers, containing 32 × 32 elementary processors, running at different time constants. Involved image processing algorithms can be programmed on this chip by tuning the appropriate interconnections weights. Propagative, active wave phenomena and retina-like effects can be observed in this chip. Design challenges, trade-offs, the buildings blocks and some test results are presented in this paper.Office of Naval Research (USA) N00014-00-10429European Community IST-1999-19007Ministerio de Ciencia y Tecnología TIC1999-082

    Spiking Neural Networks for Inference and Learning: A Memristor-based Design Perspective

    Get PDF
    On metrics of density and power efficiency, neuromorphic technologies have the potential to surpass mainstream computing technologies in tasks where real-time functionality, adaptability, and autonomy are essential. While algorithmic advances in neuromorphic computing are proceeding successfully, the potential of memristors to improve neuromorphic computing have not yet born fruit, primarily because they are often used as a drop-in replacement to conventional memory. However, interdisciplinary approaches anchored in machine learning theory suggest that multifactor plasticity rules matching neural and synaptic dynamics to the device capabilities can take better advantage of memristor dynamics and its stochasticity. Furthermore, such plasticity rules generally show much higher performance than that of classical Spike Time Dependent Plasticity (STDP) rules. This chapter reviews the recent development in learning with spiking neural network models and their possible implementation with memristor-based hardware

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur
    corecore