2,396 research outputs found

    Infrastructure robotics: Research challenges and opportunities

    Full text link
    Infrastructure robotics is about research on and development of methodologies that enable robotic systems to be used in civil infrastructure inspection, maintenance and rehabilitation. This paper briefly discusses the current research challenges and opportunities in infrastructure robotics, and presents a review of the research activities and projects in this field at the Centre for Autonomous Systems, University of Technology Sydney

    Climbing Robot for Steel Bridge Inspection: Design Challenges

    Full text link
    Inspection of bridges often requires high risk operations such as working at heights, in confined spaces, in hazardous environments; or sites inaccessible by humans. There is significant motivation for robotic solutions which can carry out these inspection tasks. When inspection robots are deployed in real world inspection scenarios, it is inevitable that unforeseen challenges will be encountered. Since 2011, the New South Wales Roads & Maritime Services and the Centre of Excellence for Autonomous Systems at the University of Technology, Sydney, have been working together to develop an innovative climbing robot to inspect high risk locations on the Sydney Harbour Bridge. Many engineering challenges have been faced throughout the development of several prototype climbing robots, and through field trials in the archways of the Sydney Harbour Bridge. This paper will highlight some of the key challenges faced in designing a climbing robot for inspection, and then present an inchworm inspired robot which addresses many of these challenges

    Importance and applications of robotic and autonomous systems (RAS) in railway maintenance sector: a review

    Get PDF
    Maintenance, which is critical for safe, reliable, quality, and cost-effective service, plays a dominant role in the railway industry. Therefore, this paper examines the importance and applications of Robotic and Autonomous Systems (RAS) in railway maintenance. More than 70 research publications, which are either in practice or under investigation describing RAS developments in the railway maintenance, are analysed. It has been found that the majority of RAS developed are for rolling-stock maintenance, followed by railway track maintenance. Further, it has been found that there is growing interest and demand for robotics and autonomous systems in the railway maintenance sector, which is largely due to the increased competition, rapid expansion and ever-increasing expense

    The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots

    Full text link
    This review considers a problem in the development of mobile robot adhesion methods with vertical surfaces and the appropriate locomotion mechanism design. The evolution of adhesion methods for wall-climbing robots (based on friction, magnetic forces, air pressure, electrostatic adhesion, molecular forces, rheological properties of fluids and their combinations) and their locomotion principles (wheeled, tracked, walking, sliding framed and hybrid) is studied. Wall-climbing robots are classified according to the applications, adhesion methods and locomotion mechanisms. The advantages and disadvantages of various adhesion methods and locomotion mechanisms are analyzed in terms of mobility, noiselessness, autonomy and energy efficiency. Focus is placed on the physical and technical aspects of the adhesion methods and the possibility of combining adhesion and locomotion methods

    A climbing autonomous robot for inspection application in 3D complex environment

    Get PDF
    Often inspection and maintenance work involve a large number of highly dangerous manual operations, especially within industrial fields such as shipbuilding and construction. This paper deals with the autonomous climbing robot which uses the “caterpillar” concept to climb in complex 3D metallic-based structures. During its motion the robot generates in real-time the path and grasp planning in order to ensure stable self-support to avoid the environment obstacles, and to optimise the robot consumption during the inspection. The control and monitoring of the robot is achieved through an advanced Graphical User Interface to allow an effective and user friendly operation of the robot. The experiments confirm its advantages in executing the inspection operations.This work has been partially funded by the Spanish government agency CICYT under project TAP95-0088. The authors would like to acknowledge the technical support of A. Jardón, E. Jiménez, C. Palazuelos, J.A. Campo and F. Manera and also the company of APTECA for its help in the mechanical development.Publicad

    A concept selection method for designing climbing robots

    Get PDF
    This paper presents a concept selection methodology, inspired by the Verein Deutscher Ingenieure (VDI) model and Pugh's weighted matrix method, for designing climbing robots conceptually based on an up-to-date literature review. The proposed method is illustrated with a case study of ongoing research, the investigation of an adaptable and energetically autonomous climbing robot, in Loughborough University

    Miniature mobile sensor platforms for condition monitoring of structures

    Get PDF
    In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment

    A novel approach to steel rivet detection in poorly illuminated steel structural environments

    Full text link
    © 2016 IEEE. It is becoming increasingly achievable for steel bridge structures, which are normally both inaccessible and hazardous for humans, to be inspected and maintained by autonomous robots. Steel bridges have been traditionally constructed by securing plate members together with rivets. However, rivets present a challenge for robots both in terms of cleaning and surface traversal. This paper presents a novel approach to RGB-D image and point cloud analysis that enables rivets to be rapidly and robustly located using low cost, non-contact sensing devices that can be easily affixed to a robot. The approach performs classification based on: (a) high-intensity blobs in color images, (b) the non-linear perturbations in depth images, and (c) surface normal clusters in 3D point clouds. The predicted rivet locations from the three classifiers are combined using a probabilistic occupancy mapping technique. Experiments are conducted in several different lab and real-world steel bridge environments, where there is no external lighting infrastructure, and the sensors are attached to a mobile platform, i.e. a climbing inspection robot. The location of rivets within 2m of the robot can be robustly located within 10mm of their correct location. The state of voxels can be predicted with above 95% accuracy, in approximately 1 second per frame
    corecore