661 research outputs found

    Open Science via HUBzero: Exploring Five Science Gateways Supporting and Growing their Open Science Communities

    Get PDF
    The research landscape applying computational methods has become increasingly interdisciplinary and complex regarding the research computing ecosystem with novel hardware, software, data, and lab instruments. Reproducibility of research results, the usability of tools, and sharing of methods are all crucial for timely collaboration for research and teaching. HUBzero is a widely used science gateway framework designed to support online communities with efficient sharing and publication processes. The paper discusses the growth of communities for the five science gateways nanoHUB, MyGeoHub, QUBEShub & SCORE, CUE4CHNG, and HubICL using the HUBzero Platform to foster open science and tackling education with a diverse set of approaches and target communities. The presented methods and magnitude of the communities elucidate successful means for science gateways for fostering open science and open education

    An Effective Interdisciplinary Teaching and Learning Methodology through Crossed-Subjects Design Project An Experience Sharing

    Get PDF
    Engineering education requires reformation to address the drastically change of the industrial development in various product markets. Nowadays most product development involves not only different disciplines of engineering but also integration of design science. In this case, the engineering education must in-cooperate design science into the curriculum seamlessly to give quality teaching and learning experience for both faculties and students. This work shares the experience of integrating design science into the engineering courses by introducing crossed subjects design project and lesson plan, which results in effective teaching and learning

    MIT’s Strategy for Educational Technology Innovation, 1999–2003

    Get PDF
    This paper discusses the institutional framework and the strategic decisions the led the launch of several major major educational technology initiatives at MIT between 1999 and 2003. It describes how MIT’s central administration provided strategic support and coordination for large educational technology programs, and it traces how strategies evolved as work progressed through 2003 to a point where major projects had been launched and were ready to proceed as ongoing concerns. The history recounted here provides a snapshot of a world-class university confronting the changing environment for higher education engendered by information technology at beginning of the 21st century

    METODOLOGIAS ATIVAS NO ENSINO SUPERIOR: UM MAPEAMENTO SISTEMÁTICO NO CONTEXTO DOS CURSOS DE ENGENHARIA

    Get PDF
    Active learning is all pedagogical alternatives that place the focus of learning on the students. With the mediation of competent teachers, the students learn by discovery, by investigation, and by problems. Such methodologies commonly promote more content retention and comprehension once the students are engaged in activities, whether through research, group collaborations, discussion, and problem solving. This work aimed to verify the temporal evolution of active learning methods in higher education Engineering courses, based on a systematic mapping of the literature. We observed which are the main researchers in this field, their geographic location and which methodologies are preferred in the context of these courses. From the results, we observe a growth of scientific publications on active learning methodologies and Engineering Education, especially in the last five years of the period analysed (between 2015 and 2020). We also see researchs on this field in all continents, with a predominance of studies led by American and European researchers. In the mapped studies, the inverted classroom and problem-based learning were the most identified methodologies. It demonstrates a concern of teachers in this area to promote activities with high involvement, which allow the development of personal and professional skills and competencies, even during their training period.Las metodologías activas pueden entenderse como alternativas pedagógicas que ponen el foco del aprendizaje en los alumnos. Con la mediación de profesores competentes, los alumnos aprenden a partir del descubrimiento, la investigación y los problemas. Estas metodologías suelen promover una mayor retención y comprensión de los contenidos enseñados, ya que el alumno participa en actividades, ya sea a través de la investigación, la colaboración en grupo, el debate y la resolución de problemas. Este trabajo tuvo como objetivo verificar la evolución temporal del uso de las metodologías activas en el contexto de los cursos de educación superior en Ingeniería, a partir de un mapeo sistemático de la literatura. A partir de un protocolo de investigación debidamente definido, se buscó verificar cuáles son los principales investigadores en esta área, su ubicación geográfica y cuáles son las metodologías preferidas en el contexto de estos cursos. A partir de los resultados, se pudo observar que el crecimiento en el número de publicaciones científicas sobre metodologías activas en el contexto de la Enseñanza de la Ingeniería, especialmente en los últimos cinco años del período analizado (entre 2015 y 2020). Se puede observar la realización de investigaciones en este contexto en todos los continentes, con un predominio de estudios dirigidos por investigadores americanos y europeos. En los estudios mapeados, el flipped classroom y el aprendizaje basado en problemas fueron las metodologías más identificadas. Esto demuestra una mayor preocupación entre los profesores de la zona por promover actividades con alta implicación que permitan el desarrollo de habilidades y competencias personales y profesionales durante el periodo de formación.As metodologias ativas podem ser entendidas como alternativas pedagógicas que colocam o foco do aprendizado nos estudantes. Com mediação de docentes competentes, os alunos aprendem a partir da descoberta, da investigação e por problemas. Tais metodologias comumente promovem uma maior retenção e compreensão de contéudos ensinados, uma vez que o aprendiz se encontra engajado nas atividades, seja por meio de pesquisa, colaborações em grupo, discussão e resolução de problemas. Este trabalho teve como objetivo verificar a evolução temporal do uso de metodologias ativas, no contexto dos cursos superiores de Engenharia, a partir de um mapeamento sistemático da literatura. A partir de um protocolo de pesquisa devidamente definido, buscou-se verificar quais os principais pesquisadores desta área, sua localização geográfica e quais as metodologias preferidas no contexto destes cursos. A partir dos resultados, foi possível observar que o crescimento do número de publicações científicas sobre metodologias ativas no contexto da Educação em Engenharia, em especial nos últimos cinco anos do período analisado (entre 2015 e 2020). Pode-se notar a realização de pesquisas neste contexto em todos os continentes, com predomínio de estudos liderados por pesquisadores americanos e europeus. Nos estudos mapeados, a sala de aula invertida e a aprendizagem baseada em problemas foram as metodologias mais identificadas. Isso demostra uma maior preocupação dos professores da área em promover atividades com elevado envolvimento, que permitam o desenvolvimento de habilidades e competências pessoais e profissionais, ainda no período de formação

    Personalization, Cognition, and Gamification-based Programming Language Learning: A State-of-the-Art Systematic Literature Review

    Full text link
    Programming courses in computing science are important because they are often the first introduction to computer programming for many students. Many university students are overwhelmed with the information they must learn for an introductory course. The current teacher-lecturer model of learning commonly employed in university lecture halls often results in a lack of motivation and participation in learning. Personalized gamification is a pedagogical approach that combines gamification and personalized learning to motivate and engage students while addressing individual differences in learning. This approach integrates gamification and personalized learning strategies to inspire and involve students while addressing their unique learning needs and differences. A comprehensive literature search was conducted by including 81 studies that were analyzed based on their research design, intervention, outcome measures, and quality assessment. The findings suggest that personalized gamification can enhance student cognition in programming courses by improving motivation, engagement, and learning outcomes. However, the effectiveness of personalized gamification varies depending on various factors, such as the type of gamification elements used, the degree of personalization, and the characteristics of the learners. This paper provides insights into designing and implementing effective personalized gamification interventions in programming courses. The findings could inform educational practitioners and researchers in programming education about the potential benefits of personalized gamification and its implications for educational practice

    Engineering and Technology Careers Fair 2016

    Get PDF
    Guide to the companies attending the FPSE Careers Fair with stand pla

    Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer

    Get PDF
    The purpose of this research was to develop a comprehensive digital avionics curriculum for aeronautical engineering students at AFIT. Due to the closing of the aeronautical engineering program at the Naval Postgraduate School, and the subsequent requirement to establish a digital avionics specialty course sequence at AFIT, a mature avionics curriculum does not yet exist that satisfies the needs of graduates who will serve as aeronautical engineers involved with the development, integration, testing, fielding, and supporting of military avionics systems as part of the overall aircraft system. Research was conducted through a comprehensive literature review and the use of a Delphi Technique survey process. 28 panel members representing the military, academe, and industry participated in a three round survey process that sought to identify the desired attributes of a newly graduated engineer and the specific subject areas of study that should be included within the avionics curriculum. The result of this research was the development of a proposed three course curriculum that will instill the desired attributes within the aeronautical engineers and provide them with the avionics knowledge required at the correct level of proficiency. Recommendations on how to implement the proposed curriculum in an effective and timely manner are presented

    Valuing diversity and establishing an approach to supporting excluded groups

    Get PDF
    Minority students and minority employees in Higher Engineering Education experience inequality. For academic staff these inequalities impact their personal development and career progression. To continue to grow and for engineering education to thrive as a professional discipline we must encourage diversity within both the student and staff populations. This paper cautions against a simple notion of diversity, rather a truly diverse culture within engineering is needed, one in which there is diversity of opportunity, diversity of thought and diversity of experience. To enable a more inclusive environment to flourish we must understand the scale of the inequalities which exist. However, this paper demonstrates that there are significant limitations to the current diversity data within the UK which leaves room for under-reporting and over-generalising. In addition, there are cultural challenges which give further likelihood to non-disclosure and lack of self-reporting. This paper proposes that further research is needed into the true lack of diversity within engineering and describes one example of a ‘thought experiment’ conducted by the researchers to start unpacking the data and highlighting the scale of the issue

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research
    corecore