187,204 research outputs found

    Towards Statistical Prioritization for Software Product Lines Testing

    Get PDF
    Software Product Lines (SPL) are inherently difficult to test due to the combinatorial explosion of the number of products to consider. To reduce the number of products to test, sampling techniques such as combinatorial interaction testing have been proposed. They usually start from a feature model and apply a coverage criterion (e.g. pairwise feature interaction or dissimilarity) to generate tractable, fault-finding, lists of configurations to be tested. Prioritization can also be used to sort/generate such lists, optimizing coverage criteria or weights assigned to features. However, current sampling/prioritization techniques barely take product behavior into account. We explore how ideas of statistical testing, based on a usage model (a Markov chain), can be used to extract configurations of interest according to the likelihood of their executions. These executions are gathered in featured transition systems, compact representation of SPL behavior. We discuss possible scenarios and give a prioritization procedure illustrated on an example.Comment: Extended version published at VaMoS '14 (http://dx.doi.org/10.1145/2556624.2556635

    Run Time Approximation of Non-blocking Service Rates for Streaming Systems

    Full text link
    Stream processing is a compute paradigm that promises safe and efficient parallelism. Modern big-data problems are often well suited for stream processing's throughput-oriented nature. Realization of efficient stream processing requires monitoring and optimization of multiple communications links. Most techniques to optimize these links use queueing network models or network flow models, which require some idea of the actual execution rate of each independent compute kernel within the system. What we want to know is how fast can each kernel process data independent of other communicating kernels. This is known as the "service rate" of the kernel within the queueing literature. Current approaches to divining service rates are static. Modern workloads, however, are often dynamic. Shared cloud systems also present applications with highly dynamic execution environments (multiple users, hardware migration, etc.). It is therefore desirable to continuously re-tune an application during run time (online) in response to changing conditions. Our approach enables online service rate monitoring under most conditions, obviating the need for reliance on steady state predictions for what are probably non-steady state phenomena. First, some of the difficulties associated with online service rate determination are examined. Second, the algorithm to approximate the online non-blocking service rate is described. Lastly, the algorithm is implemented within the open source RaftLib framework for validation using a simple microbenchmark as well as two full streaming applications.Comment: technical repor

    Towards Automated Performance Bug Identification in Python

    Full text link
    Context: Software performance is a critical non-functional requirement, appearing in many fields such as mission critical applications, financial, and real time systems. In this work we focused on early detection of performance bugs; our software under study was a real time system used in the advertisement/marketing domain. Goal: Find a simple and easy to implement solution, predicting performance bugs. Method: We built several models using four machine learning methods, commonly used for defect prediction: C4.5 Decision Trees, Na\"{\i}ve Bayes, Bayesian Networks, and Logistic Regression. Results: Our empirical results show that a C4.5 model, using lines of code changed, file's age and size as explanatory variables, can be used to predict performance bugs (recall=0.73, accuracy=0.85, and precision=0.96). We show that reducing the number of changes delivered on a commit, can decrease the chance of performance bug injection. Conclusions: We believe that our approach can help practitioners to eliminate performance bugs early in the development cycle. Our results are also of interest to theoreticians, establishing a link between functional bugs and (non-functional) performance bugs, and explicitly showing that attributes used for prediction of functional bugs can be used for prediction of performance bugs

    Designing Free Sofware for Marketing: A Game Theoretic Approach

    Get PDF
    We develop a vertical differentiation game-theoretic model that addresses the issue of designing free software samples for attaining follow-on sales. When software samples are akin to durable goods, a Monopolist giving a free sample away is likely to engender the cannibalization of sales of its commercial product. We analyze the optimal design of free software according to two characteristics: the trial time allotted for sampling (potentially renewable) and the proportion of features included in the sample. We find that these two dimensions play different roles whenever the software product is innovative or standard. We draw implications regarding the effectiveness of marketing strategies depending on the type of software product offered by a Monopolist.Vertical Differentiation, Monopolist, Free sample, Software, Durable goods, Sales Cannibalization, Optimal Design.

    Supervised learning with quantum enhanced feature spaces

    Full text link
    Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and experimentally implement two novel methods on a superconducting processor. Both methods represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers [3] to machine learning.Comment: Fixed typos, added figures and discussion about quantum error mitigatio
    • …
    corecore