2,115 research outputs found

    Mathematical programs with complementarity constraints: convergence properties of a smoothing method

    Get PDF
    In this paper, optimization problems PP with complementarity constraints are considered. Characterizations for local minimizers xˉ\bar{x} of PP of Orders 1 and 2 are presented. We analyze a parametric smoothing approach for solving these programs in which PP is replaced by a perturbed problem PτP_{\tau} depending on a (small) parameter τ\tau. We are interested in the convergence behavior of the feasible set Fτ\cal{F}_{\tau} and the convergence of the solutions xˉτ\bar{x}_{\tau} of PτP_{\tau} for τ0.\tau\to 0. In particular, it is shown that, under generic assumptions, the solutions xˉτ\bar{x}_{\tau} are unique and converge to a solution xˉ\bar{x} of PP with a rate O(τ)\cal{O}(\sqrt{\tau}). Moreover, the convergence for the Hausdorff distance d(Fτd(\cal{F}_{\tau}, F)\cal{F}) between the feasible sets of PτP_{\tau} and PP is of order O(τ)\cal{O}(\sqrt{\tau})

    Solving Mathematical Programs with Equilibrium Constraints as Nonlinear Programming: A New Framework

    Full text link
    We present a new framework for the solution of mathematical programs with equilibrium constraints (MPECs). In this algorithmic framework, an MPECs is viewed as a concentration of an unconstrained optimization which minimizes the complementarity measure and a nonlinear programming with general constraints. A strategy generalizing ideas of Byrd-Omojokun's trust region method is used to compute steps. By penalizing the tangential constraints into the objective function, we circumvent the problem of not satisfying MFCQ. A trust-funnel-like strategy is used to balance the improvements on feasibility and optimality. We show that, under MPEC-MFCQ, if the algorithm does not terminate in finite steps, then at least one accumulation point of the iterates sequence is an S-stationary point

    Sequential Convex Programming Methods for Solving Nonlinear Optimization Problems with DC constraints

    Full text link
    This paper investigates the relation between sequential convex programming (SCP) as, e.g., defined in [24] and DC (difference of two convex functions) programming. We first present an SCP algorithm for solving nonlinear optimization problems with DC constraints and prove its convergence. Then we combine the proposed algorithm with a relaxation technique to handle inconsistent linearizations. Numerical tests are performed to investigate the behaviour of the class of algorithms.Comment: 18 pages, 1 figur
    corecore