9,721 research outputs found

    Quantum codes from a new construction of self-orthogonal algebraic geometry codes

    Get PDF
    [EN] We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes. These results demonstrate that there is a lot more scope for constructing self-orthogonal AG codes than was previously known.G. McGuire was partially supported by Science Foundation Ireland Grant 13/IA/1914. The remainder authors were partially supported by the Spanish Government and the EU funding program FEDER, Grants MTM2015-65764-C3-2-P and PGC2018-096446-B-C22. F. Hernando and J. J. Moyano-Fernandez are also partially supported by Universitat Jaume I, Grant UJI-B2018-10.Hernando, F.; Mcguire, G.; Monserrat Delpalillo, FJ.; Moyano-Fernández, JJ. (2020). Quantum codes from a new construction of self-orthogonal algebraic geometry codes. Quantum Information Processing. 19(4):1-25. https://doi.org/10.1007/s11128-020-2616-8S125194Abhyankar, S.S.: Irreducibility criterion for germs of analytic functions of two complex variables. Adv. Math. 74, 190–257 (1989)Abhyankar, S.S.: Algebraic Geometry for Scientists and Engineers. Mathematical Surveys and Monographs, American Mathematical Society, Providence (1990)Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection I: statement of the problem. IEEE Trans. Inf. Theory 46, 778–788 (2000)Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection II: bounds. IEEE Trans. Inf. Theory 46, 789–800 (2000)Ashikhmin, A., Knill, E.: Non-binary quantum stabilizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000)Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 76, 405–409 (1997)Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)Campillo, A., Farrán, J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6, 71–92 (2000)Duursma, I.M.: Algebraic geometry codes: general theory. In: Advances in Algebraic Geometry Codes, Series of Coding Theory and Cryptology, vol. 5. World Scientific, Singapore (2008)Feng, K.: Quantum error correcting codes. In: Coding Theory and Cryptology, pp. 91–142. Word Scientific (2002)Feng, K., Ma, Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004)Galindo, C., Geil, O., Hernando, F., Ruano, D.: On the distance of stabilizer quantum codes from JJ-affine variety codes. Quantum Inf. Process 16, 111 (2017)Galindo, C., Hernando, F., Matsumoto, R.: Quasi-cyclic construction of quantum codes. Finite Fields Appl. 52, 261–280 (2018)Galindo, C., Hernando, F., Ruano, D.: Stabilizer quantum codes from JJ-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process 14, 3211–3231 (2015)Galindo, C., Hernando, F., Ruano, D.: Classical and quantum evaluation codes at the trace roots. IEEE Trans. Inf. Theory 16, 2593–2602 (2019)Garcia, A.: On AG codes and Artin–Schreier extensions. Commun. Algebra 20(12), 3683–3689 (1992)Goppa, V.D.: Geometry and Codes. Mathematics and its Applications, vol. 24. Kluwer, Dordrecht (1991)Goppa, V.D.: Codes associated with divisors. Probl. Inf. Transm. 13, 22–26 (1977)Gottesman, D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)Grassl, M., Rötteler, M.: Quantum BCH codes. In: Proceedings X International Symposium Theory Electrical Engineering, pp. 207–212. Germany (1999)Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2, 757–775 (2004)He, X., Xu, L., Chen, H.: New qq-ary quantum MDS codes with distances bigger than q/2q/2. Quantum Inf. Process. 15(7), 2745–2758 (2016)Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves Over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008)Høholdt, T., van Lint, J., Pellikaan, R.: Algebraic geometry codes. Handb. Coding Theory 1, 871–961 (1998)Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58, 4489–5484 (2012)Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4924 (2006)La Guardia, G.G.: Construction of new families of nonbinary quantum BCH codes. Phys. Rev. A 80, 042331 (2009)La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60, 1528–1535 (2014)Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)Matsumoto, R., Uyematsu, T.: Constructing quantum error correcting codes for pmp^m state systems from classical error correcting codes. IEICE Trans. Fund. E83–A, 1878–1883 (2000)McGuire, G., Yılmaz, E.S.: Divisibility of L-polynomials for a family of Artin–Schreier curves. J. Pure Appl. Algebra 223(8), 3341–3358 (2019)Munuera, C., Sepúlveda, A., Torres, F.: Castle curves and codes. Adv. Math. Commun. 3, 399–408 (2009)Munuera, C., Tenório, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes of castle type. Quantum Inf. Process. 15, 4071–4088 (2016)Pellikaan, R., Shen, B.Z., van Wee, G.J.M.: Which linear codes are algebraic-geometric. IEEE Trans. Inf. Theory 37, 583–602 (1991)Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press (1994)Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2557 (1996)Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009)Tsfasman, M.A., Vlăduţ, S.G., Zink, T.: Modular curves, Shimura curves and AG codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982

    Construction of Rational Surfaces Yielding Good Codes

    Get PDF
    In the present article, we consider Algebraic Geometry codes on some rational surfaces. The estimate of the minimum distance is translated into a point counting problem on plane curves. This problem is solved by applying the upper bound "\`a la Weil" of Aubry and Perret together with the bound of Homma and Kim for plane curves. The parameters of several codes from rational surfaces are computed. Among them, the codes defined by the evaluation of forms of degree 3 on an elliptic quadric are studied. As far as we know, such codes have never been treated before. Two other rational surfaces are studied and very good codes are found on them. In particular, a [57,12,34] code over F7\mathbf{F}_7 and a [91,18,53] code over F9\mathbf{F}_9 are discovered, these codes beat the best known codes up to now.Comment: 20 pages, 7 figure

    Transitive and self-dual codes attaining the Tsfasman-Vladut-Zink bound

    Get PDF
    A major problem in coding theory is the question of whether the class of cyclic codes is asymptotically good. In this correspondence-as a generalization of cyclic codes-the notion of transitive codes is introduced (see Definition 1.4 in Section I), and it is shown that the class of transitive codes is asymptotically good. Even more, transitive codes attain the Tsfasman-Vladut-Zink bound over F-q, for all squares q = l(2). It is also shown that self-orthogonal and self-dual codes attain the Tsfasman-Vladut-Zink bound, thus improving previous results about self-dual codes attaining the Gilbert-Varshamov bound. The main tool is a new asymptotically optimal tower E-0 subset of E-1 subset of E-2 subset of center dot center dot center dot of function fields over F-q (with q = l(2)), where all extensions E-n/E-0 are Galois

    A characterization of MDS codes that have an error correcting pair

    Full text link
    Error-correcting pairs were introduced in 1988 by R. Pellikaan, and were found independently by R. K\"otter (1992), as a general algebraic method of decoding linear codes. These pairs exist for several classes of codes. However little or no study has been made for characterizing those codes. This article is an attempt to fill the vacuum left by the literature concerning this subject. Since every linear code is contained in an MDS code of the same minimum distance over some finite field extension we have focused our study on the class of MDS codes. Our main result states that an MDS code of minimum distance 2t+12t+1 has a tt-ECP if and only if it is a generalized Reed-Solomon code. A second proof is given using recent results Mirandola and Z\'emor (2015) on the Schur product of codes
    • …
    corecore