28,902 research outputs found

    A cost-sensitive learning strategy for feature extraction from imbalanced data

    Full text link
    © Springer International Publishing AG 2016. In this paper, novel cost-sensitive principal component analysis (CSPCA) and cost-sensitive non-negative matrix factorization (CSNMF) methods are proposed for handling the problem of feature extraction from imbalanced data. The presence of highly imbalanced data misleads existing feature extraction techniques to produce biased features, which results in poor classification performance especially for the minor class problem. To solve this problem, we propose a costsensitive learning strategy for feature extraction techniques that uses the imbalance ratio of classes to discount the majority samples. This strategy is adapted to the popular feature extraction methods such as PCA and NMF. The main advantage of the proposed methods is that they are able to lessen the inherent bias of the extracted features to the majority class in existing PCA and NMF algorithms. Experiments on twelve public datasets with different levels of imbalance ratios show that the proposed methods outperformed the state-of-the-art methods on multiple classifiers

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy
    • …
    corecore