2,966 research outputs found

    The geometry of nonlinear least squares with applications to sloppy models and optimization

    Full text link
    Parameter estimation by nonlinear least squares minimization is a common problem with an elegant geometric interpretation: the possible parameter values of a model induce a manifold in the space of data predictions. The minimization problem is then to find the point on the manifold closest to the data. We show that the model manifolds of a large class of models, known as sloppy models, have many universal features; they are characterized by a geometric series of widths, extrinsic curvatures, and parameter-effects curvatures. A number of common difficulties in optimizing least squares problems are due to this common structure. First, algorithms tend to run into the boundaries of the model manifold, causing parameters to diverge or become unphysical. We introduce the model graph as an extension of the model manifold to remedy this problem. We argue that appropriate priors can remove the boundaries and improve convergence rates. We show that typical fits will have many evaporated parameters. Second, bare model parameters are usually ill-suited to describing model behavior; cost contours in parameter space tend to form hierarchies of plateaus and canyons. Geometrically, we understand this inconvenient parametrization as an extremely skewed coordinate basis and show that it induces a large parameter-effects curvature on the manifold. Using coordinates based on geodesic motion, these narrow canyons are transformed in many cases into a single quadratic, isotropic basin. We interpret the modified Gauss-Newton and Levenberg-Marquardt fitting algorithms as an Euler approximation to geodesic motion in these natural coordinates on the model manifold and the model graph respectively. By adding a geodesic acceleration adjustment to these algorithms, we alleviate the difficulties from parameter-effects curvature, improving both efficiency and success rates at finding good fits.Comment: 40 pages, 29 Figure

    Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation

    Get PDF
    We propose new compressive parameter estimation algorithms that make use of polar interpolation to improve the estimator precision. Our work extends previous approaches involving polar interpolation for compressive parameter estimation in two aspects: (i) we extend the formulation from real non-negative amplitude parameters to arbitrary complex ones, and (ii) we allow for mismatch between the manifold described by the parameters and its polar approximation. To quantify the improvements afforded by the proposed extensions, we evaluate six algorithms for estimation of parameters in sparse translation-invariant signals, exemplified with the time delay estimation problem. The evaluation is based on three performance metrics: estimator precision, sampling rate and computational complexity. We use compressive sensing with all the algorithms to lower the necessary sampling rate and show that it is still possible to attain good estimation precision and keep the computational complexity low. Our numerical experiments show that the proposed algorithms outperform existing approaches that either leverage polynomial interpolation or are based on a conversion to a frequency-estimation problem followed by a super-resolution algorithm. The algorithms studied here provide various tradeoffs between computational complexity, estimation precision, and necessary sampling rate. The work shows that compressive sensing for the class of sparse translation-invariant signals allows for a decrease in sampling rate and that the use of polar interpolation increases the estimation precision.Comment: 13 pages, 5 figures, to appear in IEEE Transactions on Signal Processing; minor edits and correction
    • …
    corecore