1,365 research outputs found

    Quantum Geometric Description of Cosmological Models

    Full text link
    This is a written version of the review talk given at the meeting on "Interface of Gravitational and Quantum Realms" at IUCAA, Pune during December 2001. The talk reviewed the recent work of Martin Bojowald on Loop Quantum Cosmology.Comment: 14 pages, Latex, no figures. To appear in Mod. Phys. Lett.

    Quantum Theory of Geometry II: Volume operators

    Get PDF
    A functional calculus on the space of (generalized) connections was recently introduced without any reference to a background metric. It is used to continue the exploration of the quantum Riemannian geometry. Operators corresponding to volume of three-dimensional regions are regularized rigorously. It is shown that there are two natural regularization schemes, each of which leads to a well-defined operator. Both operators can be completely specified by giving their action on states labelled by graphs. The two final results are closely related but differ from one another in that one of the operators is sensitive to the differential structure of graphs at their vertices while the second is sensitive only to the topological characteristics. (The second operator was first introduced by Rovelli and Smolin and De Pietri and Rovelli using a somewhat different framework.) The difference between the two operators can be attributed directly to the standard quantization ambiguity. Underlying assumptions and subtleties of regularization procedures are discussed in detail in both cases because volume operators play an important role in the current discussions of quantum dynamics.Comment: Latex, 3 figure

    Towards the QFT on Curved Spacetime Limit of QGR. I: A General Scheme

    Get PDF
    In this article and a companion paper we address the question of how one might obtain the semiclassical limit of ordinary matter quantum fields (QFT) propagating on curved spacetimes (CST) from full fledged Quantum General Relativity (QGR), starting from first principles. We stress that we do not claim to have a satisfactory answer to this question, rather our intention is to ignite a discussion by displaying the problems that have to be solved when carrying out such a program. In the present paper we propose a scheme that one might follow in order to arrive at such a limit. We discuss the technical and conceptual problems that arise in doing so and how they can be solved in principle. As to be expected, completely new issues arise due to the fact that QGR is a background independent theory. For instance, fundamentally the notion of a photon involves not only the Maxwell quantum field but also the metric operator - in a sense, there is no photon vacuum state but a "photon vacuum operator"! While in this first paper we focus on conceptual and abstract aspects, for instance the definition of (fundamental) n-particle states (e.g. photons), in the second paper we perform detailed calculations including, among other things, coherent state expectation values and propagation on random lattices. These calculations serve as an illustration of how far one can get with present mathematical techniques. Although they result in detailed predictions for the size of first quantum corrections such as the gamma-ray burst effect, these predictions should not be taken too seriously because a) the calculations are carried out at the kinematical level only and b) while we can classify the amount of freedom in our constructions, the analysis of the physical significance of possible choices has just begun.Comment: LaTeX, 47 p., 3 figure

    Background Independent Quantum Gravity: A Status Report

    Full text link
    The goal of this article is to present an introduction to loop quantum gravity -a background independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the article should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the article is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the article to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.Comment: 125 pages, 5 figures (eps format), the final version published in CQ

    From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity

    Full text link
    We present an introduction to the canonical quantization of gravity performed in loop quantum gravity, based on lectures held at the 3rd quantum geometry and quantum gravity school in Zakopane in 2011. A special feature of this introduction is the inclusion of new proposals for coupling matter to gravity that can be used to deparametrize the theory, thus making its dynamics more tractable. The classical and quantum aspects of these new proposals are explained alongside the standard quantization of vacuum general relativity in loop quantum gravity.Comment: 56 pages. Contribution to the Proceedings of the 3rd Quantum Geometry and Quantum Gravity School in Zakopane (2011). v2: Typos corrected, various small changes in presentation, version as published in Po

    Loop Quantum Cosmology

    Get PDF
    Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e. the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.Comment: 104 pages, 10 figures; online version, containing 6 movies, available at http://relativity.livingreviews.org/Articles/lrr-2005-11
    • …
    corecore