12,178 research outputs found

    Online Primal-Dual For Non-linear Optimization with Applications to Speed Scaling

    Full text link
    We reinterpret some online greedy algorithms for a class of nonlinear "load-balancing" problems as solving a mathematical program online. For example, we consider the problem of assigning jobs to (unrelated) machines to minimize the sum of the alpha^{th}-powers of the loads plus assignment costs (the online Generalized Assignment Problem); or choosing paths to connect terminal pairs to minimize the alpha^{th}-powers of the edge loads (online routing with speed-scalable routers). We give analyses of these online algorithms using the dual of the primal program as a lower bound for the optimal algorithm, much in the spirit of online primal-dual results for linear problems. We then observe that a wide class of uni-processor speed scaling problems (with essentially arbitrary scheduling objectives) can be viewed as such load balancing problems with linear assignment costs. This connection gives new algorithms for problems that had resisted solutions using the dominant potential function approaches used in the speed scaling literature, as well as alternate, cleaner proofs for other known results

    Truthful Assignment without Money

    Full text link
    We study the design of truthful mechanisms that do not use payments for the generalized assignment problem (GAP) and its variants. An instance of the GAP consists of a bipartite graph with jobs on one side and machines on the other. Machines have capacities and edges have values and sizes; the goal is to construct a welfare maximizing feasible assignment. In our model of private valuations, motivated by impossibility results, the value and sizes on all job-machine pairs are public information; however, whether an edge exists or not in the bipartite graph is a job's private information. We study several variants of the GAP starting with matching. For the unweighted version, we give an optimal strategyproof mechanism; for maximum weight bipartite matching, however, we show give a 2-approximate strategyproof mechanism and show by a matching lowerbound that this is optimal. Next we study knapsack-like problems, which are APX-hard. For these problems, we develop a general LP-based technique that extends the ideas of Lavi and Swamy to reduce designing a truthful mechanism without money to designing such a mechanism for the fractional version of the problem, at a loss of a factor equal to the integrality gap in the approximation ratio. We use this technique to obtain strategyproof mechanisms with constant approximation ratios for these problems. We then design an O(log n)-approximate strategyproof mechanism for the GAP by reducing, with logarithmic loss in the approximation, to our solution for the value-invariant GAP. Our technique may be of independent interest for designing truthful mechanisms without money for other LP-based problems.Comment: Extended abstract appears in the 11th ACM Conference on Electronic Commerce (EC), 201

    Energy Efficient Scheduling via Partial Shutdown

    Get PDF
    Motivated by issues of saving energy in data centers we define a collection of new problems referred to as "machine activation" problems. The central framework we introduce considers a collection of mm machines (unrelated or related) with each machine ii having an {\em activation cost} of aia_i. There is also a collection of nn jobs that need to be performed, and pi,jp_{i,j} is the processing time of job jj on machine ii. We assume that there is an activation cost budget of AA -- we would like to {\em select} a subset SS of the machines to activate with total cost a(S)Aa(S) \le A and {\em find} a schedule for the nn jobs on the machines in SS minimizing the makespan (or any other metric). For the general unrelated machine activation problem, our main results are that if there is a schedule with makespan TT and activation cost AA then we can obtain a schedule with makespan \makespanconstant T and activation cost \costconstant A, for any ϵ>0\epsilon >0. We also consider assignment costs for jobs as in the generalized assignment problem, and using our framework, provide algorithms that minimize the machine activation and the assignment cost simultaneously. In addition, we present a greedy algorithm which only works for the basic version and yields a makespan of 2T2T and an activation cost A(1+lnn)A (1+\ln n). For the uniformly related parallel machine scheduling problem, we develop a polynomial time approximation scheme that outputs a schedule with the property that the activation cost of the subset of machines is at most AA and the makespan is at most (1+ϵ)T(1+\epsilon) T for any ϵ>0\epsilon >0
    corecore