912 research outputs found

    Blurring-Sharpening Process Models for Collaborative Filtering

    Full text link
    Collaborative filtering is one of the most fundamental topics for recommender systems. Various methods have been proposed for collaborative filtering, ranging from matrix factorization to graph convolutional methods. Being inspired by recent successes of graph filtering-based methods and score-based generative models (SGMs), we present a novel concept of blurring-sharpening process model (BSPM). SGMs and BSPMs share the same processing philosophy that new information can be discovered (e.g., new images are generated in the case of SGMs) while original information is first perturbed and then recovered to its original form. However, SGMs and our BSPMs deal with different types of information, and their optimal perturbation and recovery processes have fundamental discrepancies. Therefore, our BSPMs have different forms from SGMs. In addition, our concept not only theoretically subsumes many existing collaborative filtering models but also outperforms them in terms of Recall and NDCG in the three benchmark datasets, Gowalla, Yelp2018, and Amazon-book. In addition, the processing time of our method is comparable to other fast baselines. Our proposed concept has much potential in the future to be enhanced by designing better blurring (i.e., perturbation) and sharpening (i.e., recovery) processes than what we use in this paper.Comment: Accepted by SIGIR 202

    Quantum-Gravity Analysis of Gamma-Ray Bursts using Wavelets

    Get PDF
    In some models of quantum gravity, space-time is thought to have a foamy structure with non-trivial optical properties. We probe the possibility that photons propagating in vacuum may exhibit a non-trivial refractive index, by analyzing the times of flight of radiation from gamma-ray bursters (GRBs) with known redshifts. We use a wavelet shrinkage procedure for noise removal and a wavelet `zoom' technique to define with high accuracy the timings of sharp transitions in GRB light curves, thereby optimizing the sensitivity of experimental probes of any energy dependence of the velocity of light. We apply these wavelet techniques to 64 ms and TTE data from BATSE, and also to OSSE data. A search for time lags between sharp transients in GRB light curves in different energy bands yields the lower limit M≥6.9⋅1015M \ge 6.9 \cdot 10^{15} GeV on the quantum-gravity scale in any model with a linear dependence of the velocity of light  E/M~ E/M. We also present a limit on any quadratic dependence.Comment: This version is accepted for publication in Astronomy & Astrophysics. The discussion and introduction are extended making clear why the wavelet analysis should be superior to straight cross-correlation analysis. More details on compiled data are elaborated. 18 pages, 9 figures, A&A forma

    Front Propagation in Random Media

    Get PDF
    This PhD thesis deals with the problem of the propagation of fronts under random circumstances. A statistical model to represent the motion of fronts when are evolving in a media characterized by microscopical randomness is discussed and expanded, in order to cope with three distinct applications: wild-land fire simulation, turbulent premixed combustion, biofilm modeling. In the studied formalism, the position of the average front is computed by making use of a sharp-front evolution method, such as the level set method. The microscopical spread of particles which takes place around the average front is given by the probability density function linked to the underlying diffusive process, that is supposedly known in advance. The adopted statistical front propagation framework allowed a deeper understanding of any studied field of application. The application of this model introduced eventually parameters whose impact on the physical observables of the front spread have been studied with Uncertainty Quantification and Sensitivity Analysis tools. In particular, metamodels for the front propagation system have been constructed in a non intrusive way, by making use of generalized Polynomial Chaos expansions and Gaussian Processes.The Thesis received funding from Basque Government through the BERC 2014-2017 program. It was also funded by the Spanish Ministry of Economy and Competitiveness MINECO via the BCAM Severo Ochoa SEV-2013-0323 accreditation. The PhD is fundend by La Caixa Foundation through the PhD grant “La Caixa 2014”. Funding from “Programma Operativo Nazionale Ricerca e Innovazione” (PONRI 2014-2020) , “Innotavive PhDs with Industrial Characterization” is kindly acknowledged for a research visit at the department of Mathematics and Applications “Renato Caccioppoli” of University “Federico II” of Naples

    Direct and Large-Eddy Simulation IX

    Get PDF

    Front propagation in random media.

    Get PDF
    244 p.This PhD thesis deals with the problem of the propagation of fronts under random circumstances. Astatistical model to represent the motion of fronts when are evolving in a media characterized bymicroscopical randomness is discussed and expanded, in order to cope with three distinctapplications: wild-land fire simulation, turbulent premixed combustion, biofilm modeling. In thestudied formalism, the position of the average front is computed by making use of a sharp-frontevolution method, such as the level set method. The microscopical spread of particles which takesplace around the average front is given by the probability density function linked to the underlyingdiffusive process, that is supposedly known in advance. The adopted statistical front propagationframework allowed a deeper understanding of any studied field of application. The application ofthis model introduced eventually parameters whose impact on the physical observables of the frontspread have been studied with Uncertainty Quantification and Sensitivity Analysis tools. Inparticular, metamodels for the front propagation system have been constructed in a non intrusiveway, by making use of generalized Polynomial Chaos expansions and Gaussian Processes.bcam:basque center for applied mathematic

    Development and validation of hybrid grid-based and grid-free computational VĎ€LES method

    Get PDF
    A novel hybrid grid-based and grid-free computational method which is called VĎ€LES is proposed and validated over several benchmark cases. VĎ€LES splits the flow structures into large scale ones, resolved on the grid (Eulerian approach), and small scale ones, represented by vortex particles (Lagrangian approach). Two transport equations for grid and particle solution are derived which are dynamically coupled through the existence of coupling terms in each of them. The method resembles LES with an effort to directly reproduce the subgrid motion at least in the statistical sense
    • …
    corecore