67 research outputs found

    Channel estimation and signal enhancement for DS-CDMA systems

    Get PDF
    This dissertation focuses on topics of Bayesian-based multiuser detection, space-time (S-T) transceiver design, and S-T channel parameter estimation for direct-sequence code-division multiple-access (DS-CDMA) systems. Using the Bayesian framework, various linear and simplified nonlinear multiuser detectors are proposed, and their performances are analyzed. The simplified non-linear Bayesian solutions can bridge the performance gap between sub-optimal linear multiuser detectors and the optimum multiuser detector. To further improve the system capacity and performance, S-T transceiver design approaches with complexity constraint are investigated. Novel S-T receivers of low-complexity that jointly use the temporal code-signature and the spatial signature are proposed. Our solutions, which lead to generalized near-far resistant S-T RAKE receivers, achieve better interference suppression than the existing S-T RAKE receivers. From transmitter side, we also proposed a transmit diversity (TD) technique in combination with differential detection for the DS-CDMA systems. It is shown that the proposed S-T TD scheme in combination with minimum variance distortionless response transceiver (STTD+MVDR) is near-far resistant and outperforms the conventional STTD and matched filter based (STTD+MF) transceiver scheme. Obtaining channel state information (CSI) is instrumental to optimum S-T transceiver design in wireless systems. Another major focus of this dissertation is to estimate the S-T channel parameters. We proposed an asymptotic, joint maximum likelihood (ML) method of estimating multipath channel parameters for DS-CDMA systems. An iterative estimator is proposed to further simplify the computation. Analytical and simulation results show that the iterative estimation scheme is near-far resistant for both time delays and DOAs. And it reaches the corresponding CRBs after a few iterations

    Asymptotic Redundancies for Universal Quantum Coding

    Full text link
    Clarke and Barron have recently shown that the Jeffreys' invariant prior of Bayesian theory yields the common asymptotic (minimax and maximin) redundancy of universal data compression in a parametric setting. We seek a possible analogue of this result for the two-level {\it quantum} systems. We restrict our considerations to prior probability distributions belonging to a certain one-parameter family, q(u)q(u), <u<1-\infty < u < 1. Within this setting, we are able to compute exact redundancy formulas, for which we find the asymptotic limits. We compare our quantum asymptotic redundancy formulas to those derived by naively applying the classical counterparts of Clarke and Barron, and find certain common features. Our results are based on formulas we obtain for the eigenvalues and eigenvectors of 2n×2n2^n \times 2^n (Bayesian density) matrices, ζn(u)\zeta_{n}(u). These matrices are the weighted averages (with respect to q(u)q(u)) of all possible tensor products of nn identical 2×22 \times 2 density matrices, representing the two-level quantum systems. We propose a form of {\it universal} coding for the situation in which the density matrix describing an ensemble of quantum signal states is unknown. A sequence of nn signals would be projected onto the dominant eigenspaces of \ze_n(u)

    Modulation classification of digital communication signals

    Get PDF
    Modulation classification of digital communications signals plays an important role in both military and civilian sectors. It has the potential of replacing several receivers with one universal receiver. An automatic modulation classifier can be defined as a system that automatically identifies the modulation type of the received signal given that the signal exists and its parameters lie in a known range. This thesis addresses the need for a universal modulation classifier capable of classifying a comprehensive list of digital modulation schemes. Two classification approaches are presented: a decision-theoretic (DT) approach and a neural network (NN) approach. First classifiers are introduced that can classify ASK, PSK, and FSK signals. A decision tree is designed for the DT approach and a NN structure is formulated und trained to classify these signals. Both classifiers use the same key features derived from the intercepted signal. These features are based on the instantaneous amplitude, instantaneous phase, and instantaneous frequency of the intercepted signal, and the cumulates of its complex envelope. Threshold values for the DT approach are found from the minimum total error probabilities of the extracted key features at SNR of 20 to -5dB. The NN parameters are found by training the networks on the same data. The DT and NN classifiers are expanded to include CPM signals. Signals within the CPM class are also added to the classifiers and a separate decision tree and new NN structure are found far these signals. New key features to classify these signals are also introduced. The classifiers are then expanded further to include multiple access signals, followed by QAM, PSK8 and FSK8 signals. New features arc found to classify these signals. The final decision tree is able to accommodate a total of fifteen different modulation types. The NN structure is designed in a hierarchical fashion to optimise the classification performance of these fifteen digital modulation schemes. Both DT and NN classifiers are able to classify signals with more than 90% accuracy in the presence of additive white Gaussian within SNR ranging from 20 to 5dB. However, the performance of the NN classifier appears to be more robust as it degrades gradually at the SNRs of 0 and -5dB. At -5dB, the NN has an overall accuracy of 73.58%, whereas the DT classifier achieves only 47.3% accuracy. The overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB, is 90.7% compared to 84.56% for the DT classifier. Finally, the performances of these classifiers are tested in the presence of Rayleigh fading. The DT and NN classifier structures are modified to accommodate fading and again, new key features are introduced to accomplish this. With the modifications, the overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB and 120Hz Doppler shift, is 87.34% compared to 80.52% for the DT classifier

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Modularity and Neural Integration in Large-Vocabulary Continuous Speech Recognition

    Get PDF
    This Thesis tackles the problems of modularity in Large-Vocabulary Continuous Speech Recognition with use of Neural Network
    corecore