103 research outputs found

    A dual ascent framework for Lagrangean decomposition of combinatorial problems

    Get PDF
    We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers

    A dual ascent framework for Lagrangean decomposition of combinatorial problems

    Get PDF
    We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers

    Computational Complexity versus Statistical Performance on Sparse Recovery Problems

    Get PDF
    We show that several classical quantities controlling compressed sensing performance directly match classical parameters controlling algorithmic complexity. We first describe linearly convergent restart schemes on first-order methods solving a broad range of compressed sensing problems, where sharpness at the optimum controls convergence speed. We show that for sparse recovery problems, this sharpness can be written as a condition number, given by the ratio between true signal sparsity and the largest signal size that can be recovered by the observation matrix. In a similar vein, Renegar's condition number is a data-driven complexity measure for convex programs, generalizing classical condition numbers for linear systems. We show that for a broad class of compressed sensing problems, the worst case value of this algorithmic complexity measure taken over all signals matches the restricted singular value of the observation matrix which controls robust recovery performance. Overall, this means in both cases that, in compressed sensing problems, a single parameter directly controls both computational complexity and recovery performance. Numerical experiments illustrate these points using several classical algorithms.Comment: Final version, to appear in information and Inferenc

    Multiobjective Optimization for Complex Systems

    Get PDF
    Complex systems are becoming more and more apparent in a variety of disciplines, making solution methods for these systems valuable tools. The solution of complex systems requires two significant skills. The first challenge of developing mathematical models for these systems is followed by the difficulty of solving these models to produce preferred solutions for the overall systems. Both issues are addressed by this research. This study of complex systems focuses on two distinct aspects. First, models of complex systems with multiobjective formulations and a variety of structures are proposed. Using multiobjective optimization theory, relationships between the efficient solutions of the overall system and the efficient solutions of its subproblems are derived. A system with a particular structure is then selected and further analysis is performed regarding the connection between the original system and its decomposable counterpart. The analysis is based on Kuhn-Tucker efficiency conditions. The other aspect of this thesis pertains to the study of a class of complex systems with a structure that is amenable for use with analytic target cascading (ATC), a decomposition and coordination approach of special interest to engineering design. Two types of algorithms are investigated. Modifications to a subgradient optimization algorithm are proposed and shown to improve the speed of the algorithm. A new family of biobjective algorithms showing considerable promise for ATC-decomposable problems is introduced for two-level systems, and convergence results for a specified algorithm are given. Numerical examples showing the effectiveness of all algorithms are included

    Generalized Bundle Methods

    Get PDF
    We study a class of generalized bundle methods for which the stabilizing term can be any closed convex function satisfying certain properties. This setting covers several algorithms from the literature that have been so far regarded as distinct. Under a different hypothesis on the stabilizing term and/or the function to be minimized, we prove finite termination, asymptotic convergence, and finite convergence to an optimal point, with or without limits on the number of serious steps and/or requiring the proximal parameter to go to infinity. The convergence proofs leave a high degree of freedom in the crucial implementative features of the algorithm, i.e., the management of the bundle of subgradients (β-strategy) and of the proximal parameter (t-strategy). We extensively exploit a dual view of bundle methods, which are shown to be a dual ascent approach to one nonlinear problem in an appropriate dual space, where nonlinear subproblems are approximately solved at each step with an inner linearization approach. This allows us to precisely characterize the changes in the subproblems during the serious steps, since the dual problem is not tied to the local concept of ε-subdifferential. For some of the proofs, a generalization of inf-compactness, called *-compactness, is required; this concept is related to that of asymptotically well-behaved functions

    On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems

    Full text link
    In this paper we propose a distributed dual gradient algorithm for minimizing linearly constrained separable convex problems and analyze its rate of convergence. In particular, we prove that under the assumption of strong convexity and Lipshitz continuity of the gradient of the primal objective function we have a global error bound type property for the dual problem. Using this error bound property we devise a fully distributed dual gradient scheme, i.e. a gradient scheme based on a weighted step size, for which we derive global linear rate of convergence for both dual and primal suboptimality and for primal feasibility violation. Many real applications, e.g. distributed model predictive control, network utility maximization or optimal power flow, can be posed as linearly constrained separable convex problems for which dual gradient type methods from literature have sublinear convergence rate. In the present paper we prove for the first time that in fact we can achieve linear convergence rate for such algorithms when they are used for solving these applications. Numerical simulations are also provided to confirm our theory.Comment: 14 pages, 4 figures, submitted to Automatica Journal, February 2014. arXiv admin note: substantial text overlap with arXiv:1401.4398. We revised the paper, adding more simulations and checking for typo

    Optimization with Sparsity-Inducing Penalties

    Get PDF
    Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate non-smooth norms. The goal of this paper is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted â„“2\ell_2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view
    • …
    corecore