205 research outputs found

    On sizes of complete arcs in PG(2,q)

    Get PDF
    New upper bounds on the smallest size t_{2}(2,q) of a complete arc in the projective plane PG(2,q) are obtained for 853 <= q <= 4561 and q\in T1\cup T2 where T1={173,181,193,229,243,257,271,277,293,343,373,409,443,449,457, 461,463,467,479,487,491,499,529,563,569,571,577,587,593,599,601,607,613,617,619,631, 641,661,673,677,683,691, 709}, T2={4597,4703,4723,4733,4789,4799,4813,4831,5003,5347,5641,5843,6011,8192}. From these new bounds it follows that for q <= 2593 and q=2693,2753, the relation t_{2}(2,q) < 4.5\sqrt{q} holds. Also, for q <= 4561 we have t_{2}(2,q) < 4.75\sqrt{q}. It is showed that for 23 <= q <= 4561 and q\in T2\cup {2^{14},2^{15},2^{18}}, the inequality t_{2}(2,q) < \sqrt{q}ln^{0.75}q is true. Moreover, the results obtained allow us to conjecture that this estimate holds for all q >= 23. The new upper bounds are obtained by finding new small complete arcs with the help of a computer search using randomized greedy algorithms. Also new constructions of complete arcs are proposed. These constructions form families of k-arcs in PG(2,q) containing arcs of all sizes k in a region k_{min} <= k <= k_{max} where k_{min} is of order q/3 or q/4 while k_{max} has order q/2. The completeness of the arcs obtained by the new constructions is proved for q <= 1367 and 2003 <= q <= 2063. There is reason to suppose that the arcs are complete for all q > 1367. New sizes of complete arcs in PG(2,q) are presented for 169 <= q <= 349 and q=1013,2003.Comment: 27 pages, 4 figures, 5 table

    CAPS in Z(2,n)

    Get PDF
    We consider point sets in (Z^2,n) where no three points are on a line – also called caps or arcs. For the determination of caps with maximum cardinality and complete caps with minimum cardinality we provide integer linear programming formulations and identify some values for small n

    On Saturating Sets in Small Projective Geometries

    Get PDF
    AbstractA set of points, S⊆PG(r, q), is said to be ϱ -saturating if, for any point x∈PG(r, q), there exist ϱ+ 1 points in S that generate a subspace in which x lies. The cardinality of a smallest possible set S with this property is denoted by k(r, q,ϱ ). We give a short survey of what is known about k(r, q, 1) and present new results for k(r, q, 2) for small values of r and q. One construction presented proves that k(5, q, 2) ≤ 3 q+ 1 forq= 2, q≥ 4. We further give an upper bound onk (ϱ+ 1, pm, ϱ)

    Complete caps in projective spaces PG(n,

    Get PDF
    Abstract. A computer search in the finite projective spaces PG(n, q) for the spectrum of possible sizes k of complete k-caps is done. Randomized greedy algorithms are applied. New upper bounds on the smallest size of a complete cap are given for many values of n and q. Many new sizes of complete caps are obtained. (2000): 51E21, 51E22, 94B05. Mathematics Subject Classificatio

    Integral point sets over Z_n^m

    Get PDF
    • …
    corecore