34 research outputs found

    Pruning Processes and a New Characterization of Convex Geometries

    Get PDF
    We provide a new characterization of convex geometries via a multivariate version of an identity that was originally proved by Maneva, Mossel and Wainwright for certain combinatorial objects arising in the context of the k-SAT problem. We thus highlight the connection between various characterizations of convex geometries and a family of removal processes studied in the literature on random structures.Comment: 14 pages, 3 figures; the exposition has changed significantly from previous versio

    Greedoid invariants and the greedoid Tutte polynomial

    Get PDF

    The max-flow min-cut property of two-dimensional affine convex geometries

    Get PDF
    AbstractIn a matroid, (X,e) is a rooted circuit if X is a set not containing element e and X∪{e} is a circuit. We call X a broken circuit of e. A broken circuit clutter is the collection of broken circuits of a fixed element. Seymour [The matroids with the max-flow min-cut property, J. Combinatorial Theory B 23 (1977) 189–222] proved that a broken circuit clutter of a binary matroid has the max-flow min-cut property if and only if it does not contain a minor isomorphic to Q6. We shall present an analogue of this result in affine convex geometries. Precisely, we shall show that a broken circuit clutter of an element e in a convex geometry arising from two-dimensional point configuration has the max-flow min-cut property if and only if the configuration has no subset forming a ‘Pentagon’ configuration with center e.Firstly we introduce the notion of closed set systems. This leads to a common generalization of rooted circuits both of matroids and convex geometries (antimatroids). We further study some properties of affine convex geometries and their broken circuit clutters

    Values on regular games under Kirchhoff’s laws

    Get PDF
    In cooperative game theory, the Shapley value is a central notion defining a rational way to share the total worth of a game among players. In this paper, we address a general framework leading to applications to games with communication graphs, where the set of feasible coalitions forms a poset where all maximal chains have the same length. We first show that previous definitions and axiomatizations of the Shapley value proprosed by Faigle and Kern, and Bilbao and Edelman still work. Our main contribution is then to propose a new axiomatization avoiding the hierarchical strength axiom of Faigle and Kern, and considering a new way to define the symmetry among players. Borrowing ideas from electric networks theory, we show that our symmetry axiom and the classical efficiency axiom correspond actually to the two Kirchhoff’s laws in the resistor circuit associated to the Hasse diagram of feasible coalitions. We finally work out a weak form of the monotonicity axiom which is satisfied by the proposed value.Regular set systems; regular games; Shapley value; probabilistic efficient values; regular values; Kirchhoff’s laws.

    Values on regular games under Kirchhoff's laws

    Get PDF
    In cooperative game theory, the Shapley value is a central notion defining a rational way to share the total worth of a game among players. In this paper, we address a general framework, namely regular set systems, where the set of feasible coalitions forms a poset where all maximal chains have the same length. We first show that previous definitions and axiomatizations of the Shaphey value proposed by Faigle and Kern and Bilbao and Edelman still work. our main contribution is then to propose a new axiomatization avoiding the hierarchical strength axiom of Faigle and Kern, and considering a new way to define the symmetry among players. Borrowing ideas from electric networks theory, we show that our symmetry axiom and the classical efficiency axiom correspond actually to the two Kirchhoff's laws in the resistor circuit associated to the Hasse diagram of feasible coalitions. We finally work out a weak form of the monotonicity axiom which is satisfied by the proposed value.Regular set systems, regular games, Shapley value, probabilistic efficient values, regular values, Kirchhoff's laws.

    On scattered convex geometries

    Get PDF
    A convex geometry is a closure space satisfying the anti-exchange axiom. For several types of algebraic convex geometries we describe when the collection of closed sets is order scattered, in terms of obstructions to the semilattice of compact elements. In particular, a semilattice Ω(η)\Omega(\eta), that does not appear among minimal obstructions to order-scattered algebraic modular lattices, plays a prominent role in convex geometries case. The connection to topological scatteredness is established in convex geometries of relatively convex sets.Comment: 25 pages, 1 figure, submitte
    corecore