596 research outputs found

    On the priority vector associated with a fuzzy preference relation and a multiplicative preference relation.

    Get PDF
    We propose two straightforward methods for deriving the priority vector associated with a fuzzy preference relation. Then, using transformations between multiplicative preference relations and fuzzy preference relations, we study the relationships between the priority vectors associated with these two types of preference relations.pairwise comparison matrix; fuzzy preference relation; priority vector

    Least-square method to priority of the fuzzy preference relations with incomplete information

    Get PDF
    AbstractThe priority problem of incomplete preference relations is investigated. Using the transformation relation between multiplicative preference relation and fuzzy preference relation, we develop a least-square model to obtain the collective priority vector of the incomplete preference relations presented by multiple decision makers, with the existence condition of the solution being developed. Meanwhile, we extend this model to the cases of the fuzzy preference relations with complete information presented by multiple decision makers and the fuzzy preference relation with complete information presented by one decision maker. Finally, it is illustrated by a numerical example that the method proposed is feasible and effective

    A chi-square method for priority derivation in group decision making with incomplete reciprocal preference relations

    Get PDF
    This paper proposes a chi-square method (CSM) to obtain a priority vector for group decision making (GDM) problems where decision-makers’ (DMs’) assessment on alternatives is furnished as incomplete reciprocal preference relations with missing values. Relevant theorems and an iterative algorithm about CSM are proposed. Saaty’s consistency ratio concept is adapted to judge whether an incomplete reciprocal preference relation provided by a DM is of acceptable consistency. If its consistency is unacceptable, an algorithm is proposed to repair it until its consistency ratio reaches a satisfactory threshold. The repairing algorithm aims to rectify an inconsistent incomplete reciprocal preference relation to one with acceptable consistency in addition to preserving the initial preference information as much as possible. Finally, four examples are examined to illustrate the applicability and validity of the proposed method, and comparative analyses are provided to show its advantages over existing approaches

    A Local Adjustment Method to Improve Multiplicative Consistency of Fuzzy Reciprocal Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Preferences that verify the transitivity property are usually referred to as rational or consistent preferences. Existent methods to improve the consistency of inconsistent fuzzy reciprocal preference relations (FPRs) fail to retain the original preference values because they always derive a new FPR. This article presents a new inconsistency identification and modification (IIM) method to detect and rectify only the most inconsistent elements of an inconsistent FPR. As such, the proposed IIM can be considered a local adjustment method to improve multiplicative consistency (MC) of FPRs. The case of inconsistent FPRs with missing values, i.e., incomplete FPRs, is addressed with the estimation of the missing preferences with a constrained nonlinear optimization model by the application of the IIM method. The implementation process of the proposed algorithms is illustrated with numerical examples. Simulation experiments and comparisons with existent methods are also included to show that the new method requires fewer iterations than existent methods to improve the MC of FPRs and achieves better MC level, while preserving the original preference information as much as possible than the existent methods. Thus, the results presented in this article demonstrate the correctness, effectiveness, and robustness of the proposed method

    Goal programming approaches to deriving interval fuzzy preference relations

    Get PDF
    This article investigates the consistency of interval fuzzy preference relations based on interval arithmetic, and new definitions are introduced for additive consistent, multiplicative consistent and weakly transitive interval fuzzy preference relations. Transformation functions are put forward to convert normalized interval weights into consistent interval fuzzy preference relations. By analyzing the relationship between interval weights and consistent interval fuzzy preference relations, goal-programming-based models are developed for deriving interval weights from interval fuzzy preference relations for both individual and group decision-making situations. The proposed models are illustrated by a numerical example and an international exchange doctoral student selection problem

    A Similarity Measure-based Optimization Model for Group Decision Making with Multiplicative and Fuzzy Preference Relations

    Get PDF
    Group decision making (GDM) problem based on different preference relations aims to obtain a collective opinion based on various preference structures provided by a group of decision makers (DMs) or experts, those who have varying backgrounds and interests in real world. The decision process in proposed question includes three steps: integrating varying preference structures, reaching consensus opinion, selecting the best alternative. Two major approaches: preference transformation and optimization methods have been developed to deal with the issue in first step. However, the transformation processes causes information lose and existing optimization methods are so computationally complex that it is not easy to be used by management practice. This study proposes a new consistency-based method to integrate multiplicative and fuzzy preference relations, which is based on a cosine similarity measure to derive a collective priority vector. The basic idea is that a collective priority vector should be as similar per column as possible to a pairwise comparative matrix (PCM) in order to assure the group preference has highest consistency for each decision makers. The model is computationally simple, because it can be solved using a Lagrangian approach and obtain a collective priority vector following four simple steps. The proposed method can further used to derive priority vector of fuzzy AHP. Using three illustrative examples, the effectiveness and simpleness of the proposed model is demonstrated by comparison with other methods. The results show that the proposed model achieves the largest cosine values in all three examples, indicating the solution is the nearest theoretical perfectly consistent opinion for each decision makers

    Integer programming modeling on group decision making with incomplete hesitant fuzzy linguistic preference relations

    Full text link
    © 2013 IEEE. Complementing missing information and priority vector are of significance important aspects in group decision making (GDM) with incomplete hesitant fuzzy linguistic preference relations (HFLPRs). In this paper, an integer programming model is developed based on additive consistency to estimate missing values of incomplete HFLPRs by using additive consistency. Once the missing values are complemented, a mixed 0-1 programming model is established to derive the priority vectors from complete HFLPRs, in which the underlying idea of the mixed 0-1 programming model is the probability sampling in statistics and minimum deviation between the priority vector and HFLPR. In addition, we also propose a new GDM approach for incomplete HFLPRs by integrating the integer programming model and the mixed 0-1 programming model. Finally, two case studies and comparative analysis detail the application of the proposed models

    Optimal weighting models based on linear uncertain constraints in intuitionistic fuzzy preference relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Although the classic exponential-smoothing models and grey prediction models have been widely used in time series forecasting, this paper shows that they are susceptible to fluctu- ations in samples. A new fractional bidirectional weakening buffer operator for time series prediction is proposed in this paper. This new operator can effectively reduce the negative impact of unavoidable sample fluctuations. It overcomes limitations of existing weakening buffer operators, and permits better control of fluctuations from the entire sample period. Due to its good performance in improving stability of the series smoothness, the new op- erator can better capture the real developing trend in raw data and improve forecast accu- racy. The paper then proposes a novel methodology that combines the new bidirectional weakening buffer operator and the classic grey prediction model. Through a number of case studies, this method is compared with several classic models, such as the exponential smoothing model and the autoregressive integrated moving average model, etc. Values of three error measures show that the new method outperforms other methods, especially when there are data fluctuations near the forecasting horizon. The relative advantages of the new method on small sample predictions are further investigated. Results demonstrate that model based on the proposed fractional bidirectional weakening buffer operator has higher forecasting accuracy

    A new decision making model based on Rank Centrality for GDM with fuzzy preference relations

    Get PDF
    The work of Enrique Herrera Viedma was supported by the Spanish State Research Agency under Project PID2019-103880RB-I00/AEI/10.13039/501100011033.Preference aggregation in Group Decision Making (GDM) is a substantial problem that has received a lot of research attention. Decision problems involving fuzzy preference relations constitute an important class within GDM. Legacy approaches dealing with the latter type of problems can be classified into indirect approaches, which involve deriving a group preference matrix as an intermediate step, and direct approaches, which deduce a group preference ranking based on individual preference rankings. Although the work on indirect approaches has been extensive in the literature, there is still a scarcity of research dealing with the direct approaches. In this paper we present a direct approach towards aggregating several fuzzy preference relations on a set of alternatives into a single weighted ranking of the alternatives. By mapping the pairwise preferences into transitions probabilities, we are able to derive a preference ranking from the stationary distribution of a stochastic matrix. Interestingly, the ranking of the alternatives obtained with our method corresponds to the optimizer of the Maximum Likelihood Estimation of a particular Bradley-Terry-Luce model. Furthermore, we perform a theoretical sensitivity analysis of the proposed method supported by experimental results and illustrate our approach towards GDM with a concrete numerical example. This work opens avenues for solving GDM problems using elements of probability theory, and thus, provides a sound theoretical fundament as well as plausible statistical interpretation for the aggregation of expert opinions in GDM.Spanish State Research Agency PID2019-103880RB-I00/AEI/10.13039/50110001103
    • …
    corecore