11,457 research outputs found

    On the intersection of tolerance and cocomparability graphs.

    Get PDF
    It has been conjectured by Golumbic and Monma in 1984 that the intersection of tolerance and cocomparability graphs coincides with bounded tolerance graphs. Since cocomparability graphs can be efficiently recognized, a positive answer to this conjecture in the general case would enable us to efficiently distinguish between tolerance and bounded tolerance graphs, although it is NP-complete to recognize each of these classes of graphs separately. The conjecture has been proved under some – rather strong – structural assumptions on the input graph; in particular, it has been proved for complements of trees, and later extended to complements of bipartite graphs, and these are the only known results so far. Furthermore, it is known that the intersection of tolerance and cocomparability graphs is contained in the class of trapezoid graphs. In this article we prove that the above conjecture is true for every graph G, whose tolerance representation satisfies a slight assumption; note here that this assumption concerns only the given tolerance representation R of G, rather than any structural property of G. This assumption on the representation is guaranteed by a wide variety of graph classes; for example, our results immediately imply the correctness of the conjecture for complements of triangle-free graphs (which also implies the above-mentioned correctness for complements of bipartite graphs). Our proofs are algorithmic, in the sense that, given a tolerance representation R of a graph G, we describe an algorithm to transform R into a bounded tolerance representation R  ∗  of G. Furthermore, we conjecture that any minimal tolerance graph G that is not a bounded tolerance graph, has a tolerance representation with exactly one unbounded vertex. Our results imply the non-trivial result that, in order to prove the conjecture of Golumbic and Monma, it suffices to prove our conjecture. In addition, there already exists evidence in the literature that our conjecture is true

    Evolving Clustered Random Networks

    Get PDF
    We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks

    Pairwise Compatibility Graphs (Invited Talk)

    Get PDF
    Pairwise Compatibility Graphs (PCG) are graphs introduced in relation to the biological problem of reconstructing phylogenetic trees. Without demanding to be exhaustive, in this note we take a quick look at what is known in the literature for these graphs. The evolutionary history of a set of organisms is usually represented by a tree-like structure called phylogenetic tree, where the leaves are the known species and the internal nodes are the possible ancestors that might have led, through evolution, to this set of species. Edges are evolutionary relationships between species, while the edge weights represent evolutionary distances among species (evolutionary times). The phylogenetic tree reconstruction problem consists in finding a fully labeled phylogenetic tree that'best' explains the evolution of given species, where'best' means that it optimizes a specific target function. Tree reconstruction problem is proved to be NP-hard under many criteria of optimality, so the performance of the heuristics for this problem is usually experimentally evaluated by comparing the output trees with the partial trees that are unanimously recognized as sure by biologists. But real data consist of a huge number of species, and it is unfeasible to compare trees with such a number of leaves, so it is common to exploit sample techniques. The idea is to find efficient ways to sample subsets of species from a large set in order to test the heuristics on the smaller sub-trees induced by the sample. The constraints on the sample attempt to ensure that the behavior of the heuristics will not be biased by the fact it is applied on the sample instead of on the whole tree. Since very close or very distant taxa can create problems for phylogenetic reconstruction heuristics [9], the following definition of Pairwise Compatibility Graphs [12] appears natura

    Statistical mechanics of complex networks

    Get PDF
    Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.Comment: 54 pages, submitted to Reviews of Modern Physic
    corecore