54,980 research outputs found

    On the Usefulness of Predicates

    Full text link
    Motivated by the pervasiveness of strong inapproximability results for Max-CSPs, we introduce a relaxed notion of an approximate solution of a Max-CSP. In this relaxed version, loosely speaking, the algorithm is allowed to replace the constraints of an instance by some other (possibly real-valued) constraints, and then only needs to satisfy as many of the new constraints as possible. To be more precise, we introduce the following notion of a predicate PP being \emph{useful} for a (real-valued) objective QQ: given an almost satisfiable Max-PP instance, there is an algorithm that beats a random assignment on the corresponding Max-QQ instance applied to the same sets of literals. The standard notion of a nontrivial approximation algorithm for a Max-CSP with predicate PP is exactly the same as saying that PP is useful for PP itself. We say that PP is useless if it is not useful for any QQ. This turns out to be equivalent to the following pseudo-randomness property: given an almost satisfiable instance of Max-PP it is hard to find an assignment such that the induced distribution on kk-bit strings defined by the instance is not essentially uniform. Under the Unique Games Conjecture, we give a complete and simple characterization of useful Max-CSPs defined by a predicate: such a Max-CSP is useless if and only if there is a pairwise independent distribution supported on the satisfying assignments of the predicate. It is natural to also consider the case when no negations are allowed in the CSP instance, and we derive a similar complete characterization (under the UGC) there as well. Finally, we also include some results and examples shedding additional light on the approximability of certain Max-CSPs

    Impact of sidewalls on electrical characterization

    Get PDF
    In this article the impact of sidewalls, formed during reactive ion etching, on the electrical behavior of thin film structures is presented. The presence of sidewalls was experimentally characterized by sheet resistance measurements on Van der Pauw structures. The effect of these sidewalls on the extraction of specific contact resistance from Cross Bridge Kelvin Resistance (CBKR) structures is discussed

    Tuning phase-stability and short-range order through Al-doping in (CoCrFeMn)100-xAlx high entropy alloys

    Get PDF
    For (CoCrFeMn)100x_{100-x}Alx_{x} high-entropy alloys, we investigate the phase evolution with increasing Al-content (0 \le x \le 20 at.%). From first-principles theory, the Al-doping drives the alloy structurally from FCC to BCC separated by a narrow two-phase region (FCC+BCC), which is well supported by our experiments. We highlight the effect of Al-doping on the formation enthalpy and electronic structure of (CoCrFeMn)100x_{100-x}Alx_{x} alloys. As chemical short-range order (SRO) in multicomponent alloys indicates the nascent local order (and entropy changes), as well as expected low-temperature ordering behavior, we use thermodynamic linear-response within density-functional theory to predict SRO and ordering transformation and temperatures inherent in (CoCrFeMn)100x_{100-x}Alx_{x}. The predictions agree with our present experimental findings, and other reported ones.Comment: 27 pages, 9 figures, 1 tabl
    corecore